/O INTERFACING

MD Imtiaz AHmed



/0

A computer’s job is to process data
— Computation (CPU, cache, and memory)

— Move data into and out of a system (between |/O
devices and memory)



Register transfers

* Recall that the CPU is able to output to and
input from memory using:

— an address bus and decoder to select a particular
register in memory,

— a data bus to transfer the register’s contents in or
out of the CPU, and

— a control bus to carry signals such at Read, Write,
and Output Enable.



How does the CPU talk to devices?

Device controller: Hardware that enables
devices to talk to the CPU

peripheral bus

Host adapter: Hardware that enables the
computer to talk to the CPU

Bus: Wires that transfer data between
components inside computer



Review: Computer Architecture

* Computer hardware
— CPU and caches
— Chipset
— Memory

* |/O Hardware

— 1/0 bus or interconnect
— |/O controller or adaptor
— 1/0 device




Review: Computer Architecture

I

0.
-




Types of |/O

* Two types of |/O:

— Programmed 1/0O (P10)
CPU does the work of moving data

* Direct Memory Access (DMA)
CPU offloads the work of moving data to DMA controller



Types of |/O

Programmed

Direct Memo
I/O K

Access

Port-mappe Memory-
/0 Mapped /O
Polled Interrupt-

10 driven /O




Programmed |/O

* Input:
— Device controller

* Status registers

—ready: tells if the device is done with previous
instruction.

— busy: tells if the device is busy performing an
instruction

* Data registers



Programmed |/O

* Perform an Input:
— Device tests the status register
— If it is ready then data is taken in data register
— And busy flag is set



Programmed |/O

|| CPU
1 9
Memory
‘ /O bus
Controller
rdy |busy|int|...|
Data (x) L
Data (y) ']




Programmed |/O

* Perform an output
— CPU: address the PA(l/O Ports) and test the ready
bit
— If ready bit is set
— Writes the data to data register(s)
— Controller sets busy bit and transfers data
— Controller clears the busy and ready bit



Programmed |/O

CPU
$
Memory
1/O bus
| Serial
/| controller
rdy [busy|int|...
Data

Data




Programmed |/O

* This results in the processor sitting idle
waiting for the device for significant periods,

specially when slow peripherals are involved.

This idle time could have been used for more
useful work



* |f there are more than one device using
programmed I/0O, it is necessary to poll the
ready bits of all the devices. The technique of
testing a number of peripherals in turn is
known as software polling.



Let us suppose that there are three devices . STAT1,STAT2,STAT3 are
the addresses of the status registers of these devices. PROC1 ,
PROC2 ,PROC3 are the procedures to perform input operations.

 Then the following program sequence tests the three devices:
INPUT: IN AL,STAT1
TESTAL, 1B
JZ DEV2
Call PROC1
DEV2: IN AL,STAT2
TESTAL, 1B
JZ DEV3
Call PROC2;
DEV3: IN AL,STAT3
TEST AL, 1B
JZ NO_INPUT
Call PROC3;
NO_INPUT: JMP INPUT



Interrupt I/O

Interrupts allows the peripherals to signal its readiness by interrupting
the processor . Thus it improves on programmed I/O by not requiring
the program to sit idle wlile waiting for a peripheral to become

ready. This allows more effective use of the processor, including
mnning programs at the same time as I/O is being performed.But
still 1t requires action from the CPU for each data to be transferred.

CPU Peripherdl
NI ——1IRQ odapter

‘ Data, address and confrol bus

Figure 1.5 Inferupt connection




Interrupts

" An mterrupt 1s an event that causes the CPU to mitiate a fixed
sequence, known as an interrupt sequence.

"When a peripheral 1s able to transfer data, it sets its ready tlag in 1ts
status register and also asserts a control line (IREQ) connected to the

CPU.

CPU Peripheral
NI FS—1REQ odapte

‘Dmﬂ, address and control bus \

Figure 1.5 Inferupt comnection




= As soon as 1t 1s able (often at the end of the current mstriction)

the CPU then stops what it 1s doing,stores enough intormation to be
able to resume later and starts executing an interrmpt routine.

= This routine deals with the device and then at the end uses the
mmformation stored at the beginning of the interrupt to return the CPU
to executing the interrupted program.

sMany devices may be able to interrupt. There is a list of addresses for
the mtermpt routines and one 1s chosen by using the mterrmpt
identifier as an index into the table.

This table 1s known as Interrupt Vector Table (IN'T).

=Whenever a peripheral 1s ready to transfer data it 1s necessary to
service its within a reasonable amount of time or else subsequent data
may be lost.

= Faster peripherals requure faster servicing. If two or more peripherals
are ready at the same tume, 1t 1s better to service the faster one first
since the slow one can be made to wait a Little while.



Priority Interrupts

Multiple interrupt requests can be resolved by using a
priority interrupt scheme in which a hardware priority
encoder arbitrates between requests and sends a single
value that represents the highest priority device to the
CPU. The interrupt request is formed by performing a
logical OR of the peripheral's IREQ lines.

=P -
1T - 3 -
) | R gate
= el
Daota, oddress ardd condrod us ceo
-'f- .
|
| Pexripabusral |
Ericrity ™ : IREG adapter

encoHclar

S

Paripharal
IRE=] tm I L T I

Figure 2.6 Frionty infemrupts Lsing o orionfy ancooaer




Interrupt Acknowledgement

*Interrupt requests are assumed to remain asserted until reset by
instructions in the service routine, But this 1s not the most efficient
technique.

*Until a request is de-asserted it is not possible for another request to
be seen.This may result in data from a fast peripheral being lost
while service routine 1s getting around to clearing a low priority
interrupt.

It could be better if the request could be cleared quickly after the
request is noticed.

*To assists in this most computers have a signal (Interrupt
Acknowledgement, IACK) generated by the CPU that 1s returned to
the peripheral as soon as the interrupt 1s detected.

*This clears the interrupt request from that device and allows other

devices to use the interrupt line.



CPU

INT
IACK

——

=

IREQ
IACK

Peripheral
adapter

l Data, address and control bus I

Figure 2.7 Interrupts with acknowledge




PI'iOI'ity Intermpts Using Daisy Chain

Using an interrupt acknowledgement it 1s possible to construct a simpler
priority scheme.

* In this scheme the CPU is able to determine priority not from the
interrupt request but by which device the acknowledgement 1s sent to.
*In daisy chain fashion all the interrupt request lines are OR’ed together.
*The CPU IACK 1s connected directly to the highest priority device.

So if more than one request has been made the highest priority device
sees 1t first, If 1t has not made a request , 1t passes the IACK along to the
next device.

* This continues down to the lowest priority device which will receive an

acknowledgement only if no other device has made a request.



CPU

] .
IACK IACK In Peripheral
Wired OR IACK ouft adapter
INT [< IREQ
| Data, address and control bus J
_& ¥

IACKIn Peripheral
IACK out adapfter

IREQ

I

—=ACK In

Peripheral
IACK out adapter

IREQ

1

Figure 2.8 Priority interrupts using a daisy chain



Nested Interrupts

*In order to ensure a fast response to a high priority interrupt, 1t 1s possible
to allow interrupts to interrupt interrupts.
* This nested interrupt allows a higher priority device to be serviced

quickly even if a lower priority device is being serviced.

: C Intamupts .: B infermupts
: : : A intermupts
_—-——____ I e ———
_____ —_— —_—e I SR
[ L e—
Maln program Contfinue ! M Confinue
miain : main
| program \ program

Continua B
sendce routing

C service B senvice
roting routine

Asenvice
routine

Figure 2.9 Nested inferrupts



Nested Interrupts

VT I + B Entormigets

: [ R e =1
H

:

— e e
B m Eresg@norm ALt me oL e

meain [pal=tly
G reares [ [ Ly )

b

—e—] '-r.-l Frmard
- assrskoes B assrwiioes Crcamitiryiess
(=110 gt (=1 1jl gt = L= Ll = el gt ]

A BT
ot ires

Figure 2.9 MNoshoo nfamuors

*In the figure device C interrupts the main program and 1its
service routine runs to completion, returning to the main
program.

*Device B similarly interrupts the main program but in turn
interrupted by a higher priority device A.

*When the service routine for A completes the CPU returns to
the service routine for B and when that completes the main

program continues.



Polling- vs. Interrupt-driven 1/0

* Polling
— CPU issues I/O command
— CPU directly writes instructions into device’s registers
— CPU busy waits for completion

* Interrupt-driven |/O
— CPU issues I/O command

— CPU directly writes instructions into device’s registers
— CPU continues operation until interrupt



Polling- vs. Interrupt-driven 1/0

* Polling
— Expensive for large transfers

— Better for small, dedicated systems with
infrequent I/O

* Interrupt-driven
— Overcomes CPU busy waiting
— |/O module interrupts when ready: event driven



Memory-mapped I/O

Use the same address bus to address both memory and 1/O
devices

* The memory and registers of |/O devices are mapped to address values
* Allows same CPU instructions to be used with regular memory and

devices
L]
ey
I'O registers JEZL
I " ©
[
Memory : T
L
address I'O registers E
space I
. R'W by
. peripherals
Main 24 _ 24 24
Memory Main . . -~
Memory 'O registers IO registers f«—

| |

(a) (b)



Block Data Transfer

If data transfer rate to or from an I/O 1s relatively slow , then
communication 1s possible using programmed I/O or interrupt
I/0.But some devices (such as A/D converter) may operate at high
data rate that can not be handled by byte or word transfer.For this
cases, block transfers are required.

Blocks of data are transferred at a time by special instructions.

Register contents need not to be saved, so data can be moved faster
than programmed or interrupt driven I/0.

The CPU synchronizes the block movement to or from the peripheral.

While the block movement 1s in progress, CPU 1s unable to perform
any other function.

It 1s only suited to fast transfers where the CPU and peripheral speeds
are reasonably well matched.

It 1s not commonly used.



Block Data Transfer

If data transfer rate to or from an I/O 1s relatively slow , then
communication 1s possible using programmed I/O or interrupt
I/0.But some devices (such as A/D converter) may operate at high
data rate that can not be handled by byte or word transfer.For this
cases, block transfers are required.

Blocks of data are transferred at a time by special instructions.

Register contents need not to be saved, so data can be moved faster
than programmed or interrupt driven I/0.

The CPU synchronizes the block movement to or from the peripheral.

While the block movement 1s in progress, CPU 1s unable to perform
any other function.

It 1s only suited to fast transfers where the CPU and peripheral speeds
are reasonably well matched.

It 1s not commonly used.



Direct Memory Access (DMA)

DMA controller or adaptor

Status register (ready, busy, interrupt, ...)
DMA command register

DMA register (address, size)

DMA buffer

Host CPU initiates DMA
» Device driver call (kernel mode)
* Wait until DMA device is free

* Initiate a DMA transaction (command, memory
address, size)

* Block

Controller performs DMA

» DMA data to device (size--; address++)
* lIssue interrupt on completion (size == 0)

CPU’s interrupt handler
* Wakeup the blocked process

CPU

Memory

1/O bus

rdy |busy|int | ...

1 Adaptor

DMA command

address size

Buffer




1 When  penphend cicates that 15 ready o  transter, the DMLA un
o the control of the bus, places appoprate addsess and contl

'

il o1t o ket transet ad then elesesthe b,

i I

1 This action o taung over the bus for  pend and executing 2 mesmory

oces ol mstead ofthe CPU domg 015 kown s Cyle e,




