

Computer Organization and Architecture
Referred Book

Computer_ Organization _ and_ Architecture - William Stallings

C h a p t e r 3 A Top-Level Views of Computer Function and Interconnection

 Hardware and software approaches

This set of hardware will perform various functions on data depending on control signals applied

to the hardware. In the original case of customized hardware, the system accepts data and produces

results

(Figure 3.1a).With general-purpose hardware, the system accepts data and control signals and

produces results. Thus, instead of rewiring the hardware for each new program, the programmer

simply needs to supply a new set of control signals.

Figure 3.1b indicates two major components of the system: an instruction interpreter and a module

of general-purpose arithmetic and logic functions. These two constitute the CPU. Several other

components are needed to yield a functioning computer. Data and instructions must be put into the

system. For this we need some sort of input module.

 Basic Instruction Cycle:

The processing required for a single instruction is called an instruction cycle. Using the simplified

two-step description given, the instruction cycle is depicted.

In Figure 3.3, the two steps are referred to as the fetch cycle and the execute cycle. Program

execution halts only if the machine is turned off, some sort of unrecoverable error occurs, or a

program instruction that halts the computer is encountered.

 Interrupt

an interrupt is a signal to the processor emitted by hardware or software indicating an event that

needs immediate attention. An interrupt alerts the processor to a high-priority condition requiring

the interruption of the current code the processor is executing.

Classes of Interrupts

Program

Generated by some condition that occurs as a result of an instruction execution, such as arithmetic

overflow, division by zero, attempt to execute an illegal machine instruction, and

reference outside a user's allowed memory space.

Timer

Here generated by a timer within the processor. This allows the operating system to perform certain

functions on a regular basis.

I/O

Here generated by an I/O controller, to signal normal completion of an operation or to signal a

variety of error conditions.

Hardware failure

Here generated by a failure, such as power failure or memory parity error.

 Instruction Cycle State Diagram

The figure is in the form of a state diagram. For any given instruction cycle, some states may be

null and others may be visited more than once. The states can be described as follows:

• Instruction address calculation (iac): Determine the address of the next instruction to be

executed. Usually, this involves adding a fixed number to the address of the previous instruction.

For example, if each instruction is 16 bits long and memory is organized into 16-bit words, then

add 1 to the previous address.

https://en.wikipedia.org/wiki/Central_processing_unit

.

• Instruction fetch (if): Read instruction from its memory location into the processor.

• Instruction operation decoding (iod): Analyze instruction to determine type of operation to be

performed and operand(s) to be used.

• Operand address calculation (oac): If the operation involves reference to an operand in

memory or available via I/O, then determine the address of the operand.

• Operand fetch (of): Fetch the operand from memory or read it in from I/O.

• Data operation (do): Perform the operation indicated in the instruction.

• Operand store (os): Write the result into memory or out to I/O.

 Instruction cycle state diagram with interrupts

We described the processor’s instruction cycle (Figure 3.9).To recall; an instruction cycle

includes the following stages:

• Fetch: Read the next instruction from memory into the processor.

• Execute: Interpret the op-code and perform the indicated operation.

• Interrupt: If interrupts are enabled and an interrupt has occurred, save the current process state

and service the interrupt.

The main line of activity consists of alternating instruction fetch and instruction execution

activities. After an instruction is fetched, it is examined to determine if any indirect addressing is

involved. If so, the required operands are fetched using indirect addressing. Following execution,

an interrupt may be processed before the next instruction fetch.

 Computer Buses

A bus is a communication system that transfers data between components inside a computer, or

between computers. This expression covers all related hardware components (wire, optical fiber,

etc.) and software, including communication protocols.

Although there are many different bus designs, on any bus the lines can be classified into three

functional groups (Figure 3.16): data, address, and control lines.

The data lines provide a path for moving data among system modules. These lines, collectively,

are called the data bus. The data bus may consist of 32, 64, 128, or even more separate lines, the

number of lines being referred to as the width of the data bus.

The address lines are used to designate the source or destination of the data on the data bus. For

example, if the processor wishes to read a word (8, 16, or 32 bits) of data from memory, it puts the

address of the desired word on the address lines.

The control lines are used to control the access to and the use of the data and address lines. Because

the data and address lines are shared by all components, there must be a means of controlling their

use.

https://en.wikipedia.org/wiki/Computer

 Traditional Bus Architecture

Figure 3.18a shows some typical examples of I/O devices that might be attached to the expansion

bus. Network connections include local area networks (LANs) such as a 10-Mbps Ethernet and

connections to wide area networks (WANs) such as a packet-switching network.

SCSI (small computer system interface) is itself a type of bus used to support local disk drives and

other peripherals. A serial port could be used to support a printer or scanner. This traditional bus

architecture is reasonably efficient but begins to break down as higher and higher performance is

seen in the I/O devices.

 High performance bus structure

Figure 3.18b shows a typical realization of this approach .Again, there is a local bus that connects

the processor to a cache controller, which is in turn connected to a system bus that supports main

memory. The cache controller is integrated into a bridge, or buffering device, that connects to the

high-speed bus.

This bus supports connections to high-speed LANs, such as Fast Ethernet at 100 Mbps, video and

graphics workstation controllers, as well as interface controllers to local peripheral buses,

including SCSI and FireWire.

The latter is a high-speed bus arrangement specifically designed to support high-capacity I/O

devices. Lower-speed devices are still supported off an expansion bus, with an interface buffering

traffic between the expansion bus and the high-speed bus.

 Elements of BUS design

A variety of different bus implementations exist, there are a few basic parameters or design

elements that serve to classify and differentiate buses. Table 3.2 lists key elements.

BUS TYPES Bus lines can be separated into two generic types: dedicated and multiplexed.

A dedicated bus line is permanently assigned either to one function or to a physical subset of

computer components.

The address is then removed from the bus, and the same bus connections are used for the

subsequent read or write data transfer. This method of using the same lines for multiple purposes

is known as time multiplexing.

METHOD OF ARBITRATION In all but the simplest systems, more than one module may need

control of the bus.

In a centralized scheme, a single hardware device, referred to as a bus controller or arbiter, is

responsible for allocating time on the bus.

In a distributed scheme, there is no central controller. Rather, each module contains access control

logic and the modules act together to share the bus.

METHOD OF ARBITRATION In all but the simplest systems, more than one module may need

control of the bus.

In a centralized scheme, a single hardware device, referred to as a bus controller or arbiter, is

responsible for allocating time on the bus.

In a distributed scheme, there is no central controller. Rather, each module contains access control

logic and the modules act together to share the bus.

TIMING refers to the way in which events are coordinated on the bus. Buses use either

synchronous timing or asynchronous timing.

With synchronous timing, the occurrence of events on the bus is determined by a clock. The bus

includes a clock line upon which a clock transmits a regular sequence of alternating 1s and 0s of

equal duration.

With asynchronous timing, the occurrence of one event on a bus follows and depends on the

occurrence of a previous event. In the simple read the processor places address and status signals

on the bus. After pausing for these signals to stabilize, it issues a read command, indicating the

presence of valid address and control signals.

BUS WIDTH We have already addressed the concept of bus width. The width of the data bus

has an impact on system performance: The wider the data bus, the greater the number of bits

transferred at one time.

DATA TRANSFER TYPE Finally, a bus supports various data transfer types. All buses support

both write (master to slave) and read (slave to master) transfers.

A read–modify–write operation is simply a read followed immediately by a write to the same

address.

Read-after-write is an indivisible operation consisting of a write followed immediately by a read

from the same address.

Some bus systems also support a block data transfer. In this case, one address cycle is followed

by n data cycles.

PCI Bus

The peripheral component interconnect (PCI) is a popular high-bandwidth, processor-independent

bus that can function as a peripheral bus. Compared with other common bus specifications, PCI

delivers better system performance for high-speed I/O subsystems (e.g., graphic display adapters,

network interface controllers, disk controllers, and so on).

 PCI Bus typical Desktop system

Figure 3.22a shows a typical use of PCI in a single-processor system. A combined DRAM

controller and bridge to the PCI bus provides tight coupling with the processor and the ability to

deliver data at high speeds.

The bridge acts as a data buffer so that the speed of the PCI bus may differ from that of the

processor’s I/O capability.

 PCI Bus typical Server system

In a multiprocessor system (Figure 3.22b), one or more PCI configurations may be connected by

bridges to the processor’s system bus. The system bus supports only the processor/cache units,

main memory, and the PCI bridges.

Again, the use of bridges keeps the PCI independent of the processor speed yet provides the ability

to receive and deliver data rapidly.

 PCI Commands

Bus activity occurs in the form of transactions between an initiator, or master, and a target. When

a bus master acquires control of the bus, it determines the type of transaction that will occur next.

The commands are as follows:

• Interrupt Acknowledge

• Special Cycle

• I/O Read

• I/O Write

• Memory Read

• Memory Read Line

• Memory Read Multiple

• Memory Write

• Memory Write and Invalidate

• Configuration Read

• Configuration Write

• Dual address Cycle

