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C h a p t e r 3 A Top-Level Views of Computer Function and Interconnection 
 

 Hardware and software approaches 

This set of hardware will perform various functions on data depending on control signals applied 

to the hardware. In the original case of customized hardware, the system accepts data and produces 

results 

 

(Figure 3.1a).With general-purpose hardware, the system accepts data and control signals and 

produces results. Thus, instead of rewiring the hardware for each new program, the programmer 

simply needs to supply a new set of control signals. 

 
 

Figure 3.1b indicates two major components of the system: an instruction interpreter and a module 

of general-purpose arithmetic and logic functions. These two constitute the CPU. Several other 

components are needed to yield a functioning computer. Data and instructions must be put into the 

system. For this we need some sort of input module. 

 

 

 Basic Instruction Cycle:  

 



 

 

The processing required for a single instruction is called an instruction cycle. Using the simplified 

two-step description given, the instruction cycle is depicted. 

 
In Figure 3.3, the two steps are referred to as the fetch cycle and the execute cycle. Program 

execution halts only if the machine is turned off, some sort of unrecoverable error occurs, or a 

program instruction that halts the computer is encountered. 

 

 

 Interrupt 

an interrupt is a signal to the processor emitted by hardware or software indicating an event that 

needs immediate attention. An interrupt alerts the processor to a high-priority condition requiring 

the interruption of the current code the processor is executing. 

Classes of Interrupts 

Program  

Generated by some condition that occurs as a result of an instruction execution, such as arithmetic 

overflow, division by zero, attempt to execute an illegal machine instruction, and 

reference outside a user's allowed memory space. 

Timer  

Here generated by a timer within the processor. This allows the operating system to perform certain 

functions on a regular basis. 

I/O 

Here generated by an I/O controller, to signal normal completion of an operation or to signal a 

variety of error conditions. 

Hardware failure 

Here generated by a failure, such as power failure or memory parity error. 

 

 

 

 Instruction Cycle State Diagram 

The figure is in the form of a state diagram. For any given instruction cycle, some states may be 

null and others may be visited more than once. The states can be described as follows: 

 

• Instruction address calculation (iac): Determine the address of the next instruction to be 

executed. Usually, this involves adding a fixed number to the address of the previous instruction. 

For example, if each instruction is 16 bits long and memory is organized into 16-bit words, then 

add 1 to the previous address. 
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.  
 

• Instruction fetch (if): Read instruction from its memory location into the processor. 

• Instruction operation decoding (iod): Analyze instruction to determine type of operation to be 

performed and operand(s) to be used. 

• Operand address calculation (oac): If the operation involves reference to an operand in 

memory or available via I/O, then determine the address of the operand. 

• Operand fetch (of): Fetch the operand from memory or read it in from I/O. 

• Data operation (do): Perform the operation indicated in the instruction. 

• Operand store (os): Write the result into memory or out to I/O. 

 

 Instruction cycle state diagram with interrupts  

 

We described the processor’s instruction cycle (Figure 3.9).To recall; an instruction cycle 

includes the following stages: 

• Fetch: Read the next instruction from memory into the processor. 

• Execute: Interpret the op-code and perform the indicated operation. 

• Interrupt: If interrupts are enabled and an interrupt has occurred, save the current process state 

and service the interrupt. 

The main line of activity consists of alternating instruction fetch and instruction execution 

activities. After an instruction is fetched, it is examined to determine if any indirect addressing is 

involved. If so, the required operands are fetched using indirect addressing. Following execution, 

an interrupt may be processed before the next instruction fetch. 



 

 

 
 

 Computer Buses 

A bus is a communication system that transfers data between components inside a computer, or 

between computers. This expression covers all related hardware components (wire, optical fiber, 

etc.) and software, including communication protocols. 

 

Although there are many different bus designs, on any bus the lines can be classified into three 

functional groups (Figure 3.16): data, address, and control lines. 

The data lines provide a path for moving data among system modules. These lines, collectively, 

are called the data bus. The data bus may consist of 32, 64, 128, or even more separate lines, the 

number of lines being referred to as the width of the data bus. 

 

 
 

The address lines are used to designate the source or destination of the data on the data bus. For 

example, if the processor wishes to read a word (8, 16, or 32 bits) of data from memory, it puts the 

address of the desired word on the address lines. 

The control lines are used to control the access to and the use of the data and address lines. Because 

the data and address lines are shared by all components, there must be a means of controlling their 

use. 
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 Traditional Bus Architecture  

Figure 3.18a shows some typical examples of I/O devices that might be attached to the expansion 

bus. Network connections include local area networks (LANs) such as a 10-Mbps Ethernet and 

connections to wide area networks (WANs) such as a packet-switching network.  

 

 
 

SCSI (small computer system interface) is itself a type of bus used to support local disk drives and 

other peripherals. A serial port could be used to support a printer or scanner. This traditional bus 

architecture is reasonably efficient but begins to break down as higher and higher performance is 

seen in the I/O devices. 

 

 

 High performance bus structure  

 

Figure 3.18b shows a typical realization of this approach .Again, there is a local bus that connects 

the processor to a cache controller, which is in turn connected to a system bus that supports main 

memory. The cache controller is integrated into a bridge, or buffering device, that connects to the 

high-speed bus.  

 

This bus supports connections to high-speed LANs, such as Fast Ethernet at 100 Mbps, video and 

graphics workstation controllers, as well as interface controllers to local peripheral buses, 

including SCSI and FireWire. 



 

 

 
 

The latter is a high-speed bus arrangement specifically designed to support high-capacity I/O 

devices. Lower-speed devices are still supported off an expansion bus, with an interface buffering 

traffic between the expansion bus and the high-speed bus. 

 

 Elements of BUS design 

A variety of different bus implementations exist, there are a few basic parameters or design 

elements that serve to classify and differentiate buses. Table 3.2 lists key elements. 

 

BUS TYPES Bus lines can be separated into two generic types: dedicated and multiplexed. 

A dedicated bus line is permanently assigned either to one function or to a physical subset of 

computer components. 

The address is then removed from the bus, and the same bus connections are used for the 

subsequent read or write data transfer. This method of using the same lines for multiple purposes 

is known as time multiplexing. 

 

METHOD OF ARBITRATION In all but the simplest systems, more than one module may need 

control of the bus. 

In a centralized scheme, a single hardware device, referred to as a bus controller or arbiter, is 

responsible for allocating time on the bus. 

In a distributed scheme, there is no central controller. Rather, each module contains access control 

logic and the modules act together to share the bus. 
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control of the bus. 



 

 

In a centralized scheme, a single hardware device, referred to as a bus controller or arbiter, is 

responsible for allocating time on the bus. 

 
 

In a distributed scheme, there is no central controller. Rather, each module contains access control 

logic and the modules act together to share the bus. 

 

TIMING refers to the way in which events are coordinated on the bus. Buses use either 

synchronous timing or asynchronous timing. 

With synchronous timing, the occurrence of events on the bus is determined by a clock. The bus 

includes a clock line upon which a clock transmits a regular sequence of alternating 1s and 0s of 

equal duration. 

With asynchronous timing, the occurrence of one event on a bus follows and depends on the 

occurrence of a previous event. In the simple read the processor places address and status signals 

on the bus. After pausing for these signals to stabilize, it issues a read command, indicating the 

presence of valid address and control signals. 

 

BUS WIDTH We have already addressed the concept of bus width. The width of the data bus 

has an impact on system performance: The wider the data bus, the greater the number of bits 

transferred at one time. 

 

DATA TRANSFER TYPE Finally, a bus supports various data transfer types. All buses support 

both write (master to slave) and read (slave to master) transfers. 

A read–modify–write operation is simply a read followed immediately by a write to the same 

address. 

Read-after-write is an indivisible operation consisting of a write followed immediately by a read 

from the same address. 

Some bus systems also support a block data transfer. In this case, one address cycle is followed 

by n data cycles. 

 

PCI Bus  

The peripheral component interconnect (PCI) is a popular high-bandwidth, processor-independent 

bus that can function as a peripheral bus. Compared with other common bus specifications, PCI 

delivers better system performance for high-speed I/O subsystems (e.g., graphic display adapters, 

network interface controllers, disk controllers, and so on).  



 

 

 

 PCI Bus typical Desktop system 

 

Figure 3.22a shows a typical use of PCI in a single-processor system. A combined DRAM 

controller and bridge to the PCI bus provides tight coupling with the processor and the ability to 

deliver data at high speeds.  

The bridge acts as a data buffer so that the speed of the PCI bus may differ from that of the 

processor’s I/O capability.  
 
 

 
 

 

 PCI Bus typical Server system 

 

In a multiprocessor system (Figure 3.22b), one or more PCI configurations may be connected by 

bridges to the processor’s system bus. The system bus supports only the processor/cache units, 

main memory, and the PCI bridges.  

 

Again, the use of bridges keeps the PCI independent of the processor speed yet provides the ability 

to receive and deliver data rapidly. 

 

 



 

 

 
 

 PCI Commands 

Bus activity occurs in the form of transactions between an initiator, or master, and a target. When 

a bus master acquires control of the bus, it determines the type of transaction that will occur next. 

The commands are as follows: 

 

• Interrupt Acknowledge 

• Special Cycle 

• I/O Read 

• I/O Write 

• Memory Read 

• Memory Read Line 

• Memory Read Multiple 

• Memory Write 

• Memory Write and Invalidate 

• Configuration Read 

• Configuration Write 

• Dual address Cycle 

 


