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We live in a world fall of scientific and techniological sdvances. In recent years it has becorme quite difficult
mot to notice the proliferation of something called computer graphics. Almost every compuler system 15 sel up 1o
allow the user o interact with the system through a graphical user interface, where information on the display
sereen is conveyved in both textual and graphical forms. Movies and video games are popular showcases of the
labest technology for people, both young and old. Watching the TV for a while, the likelihood is that vou will
see the magic touch of computer graphics i a commercial,

This book is both a self-contained text and a valuable study aid on the fundamental principles of computer
graphics. It takes & goal-oriented approach to discuss the important concepts, the underlying mathematics, and
the algorithrmic aspects of the computerized image synthesis process. 1t contains hundreds of solved problems
that help reinforce one's understanding of the field and exemplify effective problem-solving technigues.

Although the primary audience are college studenis iaking a compuler graphics course in & compauier
SCIENCE OF Compuler engineenng program, any educated person with a desire to look inlo the inner workings of
computer graphics should be able to learn from this concise infroduction. The recommended prerequisites ane
some working knowledge of a computer system, the equivalent of one or two semesters of programming, a basic
understanding of daia structures and algorithms, and a basic knowledge of linear algebra and analytical
geametry,

The field of computer graphics 15 charactenized by rapid changes in how the technology is used in everyday
applications and by constant evolution of graphics systems. The life span of graphics hardware scems to be
gedting shorter and shorter. An industry standard for computer graphics often becomes obsolete before it is
finalized. A programming language that is a popular wehicle for graphics applications when a siudent begins his
or her college study is likely to be on its way out by the time he or she graduates,

In this book we try to cover the key ingredients of computer graphics that tend to have a lasting value (only
m relative terms, of course). Instead of compiling highly equipment-specific or computing environment-specific
imformation, we strive to provide a good explanation of the fundamental concepts and the relationship between
them. We discuss subject matters in the overall framework of computer graphics and emphasize mathematical
and /or algorithmic solutipns. Algorithms are presented in pseudo-code rather than a particular programming
language. Examples are given with specifics to the extent that they can be easily made into working versions on
i particular compater sysbem,

We believe that this approach brings unique benefit to & diverse group of readers. First, the book can be read
by itself as a general mtroduction 0 computer graphics for people who want technical substance but not the
burden of implementational overhicad. Second, it can be used by instructors and students as a resource book o
supplement any comprehensive primary text. Third, it may serve a5 a stepping-stone for practiioners who want
sormething that is more understandable than their graphics system’s programmer’s manuals,

The first edition of this book has served its audience well for over a decade. | would like to salute and thank
my coauthors for thear invaluable proundwork. The cwrrent version represents o significant revision to the
ariginal, with several chapters replaced fo cover new topics, and the remaining material updated throughout the
rest of the book, 1 hope that it can serve our future audience as well for years 0 come,

Thank vou for choosing our book. May you find it stimulating and rewarding,

ZHIGAMNG XIANG
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Introduction

Computes praphics is generally regarded as a branch of computer science that deals with the theory and
technology for computerized image synthesis. A computer-gencrated image can depict a scene as simple as
the outhing of a tnangle on a uniform background and as complex as a magnificent dinosaur in a tropical
fiowest. But how do these things become part of the picture? What makes drawing on a computer different
fhom sketehing with a pen or photographing with a camera? In this chapter we will introduce some
imporknt eoncepts and outline the relationship among these concepts, The goal of such a mini-survey of
the field of computer graphics is to enable us to appreciate the various answers to these questions that we
will detal in the rest of the book not only in their own nght but also in the context of the overall
framowork.

L1 A MINI-SURVEY

First lets consider drawing the outline of a triangle (see Fig, 1-1). In real life this would begin with a
decision in our mind regarding such peometric characteristics as the type and size of the triangle, followed
b Gur action o move a pen across A piece of paper. In computer graphics terminology, what we have
envisioned 18 called the object definition, which defines the triangle in an abstract space of our choosing.
Thiz space is continuous and is called the obfect space. Our action to draw maps the imaginary object into
i nangle on paper, which constitutes a continuous display surface in another space called the image space.
This mapping sction is further influenced by our choice regarding such factors as the location and
orientation of the nangle. In other words, we may place the mangle in the middle of the paper, or we may
dranw of near the upper left comer. We may have the sharp comer of the tnangle pointing to the right, or we
may have it pointing to the left.

A comparablc process takes place when a computer is used to produce the picture. The major
commputational steps imvolved in the process give nise to several imporiant areas of computer graphics. The
area thal aliends (o the need to define objects, such as the trangle, in an efficient and effective manner is
called peometnie representation. In our example we can place a two-dimensional Cartesian coordinate
Eysiem inbo the object space. The tnangle can then be represented by the x and v coordinates of its three
wertices, with the understanding that the computer system will connect the first and second vertices with a
ling segment. the sccond and third vertices with another line segment, and the third and first with yet
another lne segmont.

The next arca of computer graphics that deals with the placement of the triangle is called
imansiormation. Here we use matrices 1o realize the mapping of the trangle 1o its final destination in the
image space, We can set up the transformation matrix to control the location and onentation of the
displayed trianylc. We can even enlarge or reduce its size. Furthermore, by using multiple settings for the

1
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transformation matrix, we can mstruct the computer to display several tnangles of varying size and
oricatation at different locations, all from the same model in the object space.

Al this point most readers may have already been wondering about the crucial difference between the
triangle drawn on paper and the irangle displayed on the computer monitor {an exaggerated version of
what vou would see on o real monitor), The former has its verices connected by smooth edges, whersas
the latter is not exactly a line-drawing, The fundamental reason hers is that the image space in computer
graphics is, generally speaking, nof continuous. It consists of a sef of discrete pixels, i.e., picture elements,
that are armanged in a row-and-column fashion. Hence a homzontal or vertical line segment becomes a
group of adjecent pixels in a row or column, respectively, and a slanted line segment becomes something
that resembles a staircase. The area of computer graphics that is responsible for converting a continuous
figure, such as a linc segment, into its discrete approximation is called scan conversion.

The distortion introduced by the conversion from continuous space to discrete space is referred to as
the aliasing cffect of the conversion. While reducing the size of individual pixels should make the
distortion less noticeable, we do 50 at a significant cost in terms of computational resources. For instance, if
we cut each pixel by half in both the horizental and the vertical direction we would need four times the
number of pixels in order 1o keep the physical dimension of the picture constant, This would translate into,
ameng other things, Four times the memory requirement for storing the image. Exploring other ways o
alleviate the negative impact of the aliasing effect is the focus of another area of computer graphics called
anti-aliasing.

Putting together what we have so far leads to a simplified graphics pipeling (see Fig. 1-2), which
exemplifies the architecture of a typical graphics system. At the start of the pipeling, we have primitive
objects represented in some application-dependent data structures, For example, the coordinates of the
wertices of a triangle, viz., (%, yy % (%3, vy} and (%, ), can be casily stored in a 3 = 2 armay. The graphics
system first performs transformation on the origmal data according to user-specified parameters, and then
carries out scan conversion with or without anti-aliasing to put the picture on the screen. The coordinate
gystem in the middle box in Fig. 1-2 serves as an intermediary between the object coordinate system on the

Feproscntabm Tram=formation SOn edmvETied

i i

Fig. 1-2 A simple graphics pipeline.
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left and the image or device coordinate system on the right. It is called the world coordinate system,
representing whene we place transformed objects to compose the picture we want to draw, The example in
the box shows two triangles: the one on the right is a scaled copy of the original that is moved up and to the
right, the one on the left is another scaled copy of the original that is rotated 907 counterclockwise around
the onigin of the coordinate system and then moved up and o the right in the same way,

In a typical implementation of the graphics pipeline we would write our application program in a host
programming language and call library subroutines to perform graphics operations. Some subroutines are
used to prescribe, among other things, transformation parameters, Others are used to draw, ic., to feed
original data into the pipeline so current system settings are automatically applied to shape the end product
coming out of the pipeline, which is the picture on the screen.

Having looked at the kev ingredients of what is called rwo-dimensional graphics, we mow furn our
attention to three-dimensional graphics. With the addition of a third dimension one should notice the
profound distinction between an object and its picture, Figure 1-3 shows several possible ways to draw a
cubic object, but none of the drawings even come close to being the object itself. The drawings simply
represent projections of the three-dimensional object onto a two-dimensional display surface. This means
that besides three-dimensional representation and transformation, we have an additional aren of computer

graphics that covers projection methods.

Fig. 1-3 Several ways to depict a cube.

Did you notice that each drawing in Fig. 1-3 shows only three sides of the cubic object? Being a solid
three-dimensional object the cube has six plane surfaces. However, we depict it as if we were looking at it
in real lifie. We only draw the surfaces that are visible to us, Surfaces that are obscured from our eyesight
are not shown, The area of computer graphics that deals with this computational task 15 called hidden
surface removal. Adding projection and hidden surface removal to our simple graphics pipeline, nght after
transformation but before scan conversion, results in & prototype for three-dimensional graphics.

Moy let’s follow up on the idea that we want o produce a picture of an object in real-life fashion. This
presents a great challenge for computer graphics, since there is an extremely effective way to produce such
a picture: photography. In order to generate a picture that is photo-realistic, i.c.. that looks as good as a
photograph, we need to explore how a camera and nature work together to produce a snapshod.

When a camera is used o photograph a real-life object illuminated by a light source, light energy
coming out of the light source gets reflected from the object surface through the camera lens onto the
negative, forming an image of the object. Generally, the part of the object that is closer 1o the light source
should appear brighter in the picture than the part that is further away, and the part of the object that is
facing away from the light source should appesr relatively dark. Figure 1-4 shows a computer-generated

Fig. 14 Two shaded spheres,
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image that depicts two spherical objects illominated by a light source that is located somewhers between
the spheres and the “camera™ ab about the ten to eleven o'clock position, Although both spheres have
gradual shadings, the bright spot on the large sphere looks like a reflection of the light source and hence
suggests 3 difference in their reflectance property (the lange sphere being shinder than the small one). The
mathematical formulae that mimic this type of optical phenomenon are referred to as local iflumination
models, for the energy coming directly from the light source to a particular object surface is not a foll
sccount of the energy armiving at that surface. Light encrgy is also reflected from one object surface to
another, and it can go through a transparent or translicent object and continue on o other places.
Computational methods that strive to provide 3 more accurate account of light transport than local
illumination models are referred o a8 global illomination models.

MNow take a closer look at Fig. 1-4. The two objects seem to have super-smooth surfaces, What are they
made of? How can they be so perfect? Do vou see many physical objects around you that exhibit such
surface chamcteristics? Furthermore, it looks like the small sphere is positioned between the light source
and the large sphere. Shouldn’t we see its shadow on the large sphere? In computer graphics the surface
shading variations that distinguish a wood surface from a marble surface or other types of surface are
referred io as surface texires, There are various technigones o add surface textures 1o objects 1o make them
book more realistic. On the other hand, the compotational task to inclode shadows in a picture 15 called
shadow generation.

Before moving on to prepare for a closer look at each of the subject areas we have introduced in this
min-survey, we want to briefly discuss a couple of alhied fields of computer scicnce that also deal with
graphical nformation,

Image Processing

The key element that distinguishes image processing (or digital unage processing) from computer
graphics 18 that image processing generally beging with images in the image space and performs pixel-
based operations on them fo prodoce new images that exhibit cerain desired features, For example, we
may resel each pixel in the image displayed on the monitor screen in Fig. 1-1 to its complementary colos
{e.g.. black to white and white to Black), uming a dark triangle on a white background to a white riangle
on a dark background, or vice versa, While each of these two fields has ils own focus and strength, they
also overlap and complement éach other. In fact, stunning visual effects are often achieved by using a
combingtion of computer graphics and image processing techniques.

Compuoter-Heman Interaction

While the main focus of computer graphics is the production of images, the field of computer-human
interaction promodes effective communication between man and machine. The tao fields join forces when
it comes o such areas as graphical user interfaces. There are many kinds of physical devices that can be
attached 1o a computer for the purpose of interaction, starting with the kevboard and the mouse. Each
physical device can often be programmed to deliver the function of various logical devices (e.g., Locator,
Chotce—see below). For example, 8 mouse can be used to specify locations in the image space (acting as a
Locator device). In this case a cursor is often displayed as visual feedback to allow the user see the
locations being specified. A mouse can also be used to select an em in a pull-down or pop-up manoal
(acting as a Choice device), In this case it is the wdentification of the selected manual item that counts and
the ftem iz often highlighted as a whaole (the absolute location of the cursar is essentially irrelevant). From
these we can see that a physical device may be used in different ways and information can be conveyed o
the user in different graphical forms. The key challenge s to design intemactive protocols thal make
effective use of devices and graphics in a way that is user-friendly—easy, intuitive, efficient, etc.
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1.2 WHAT'S AHEAD

We hope that our bref flight over the landscape of the graphics kingdom has given you a good
impression of some of the important landmarks and made you eager to farther your exploration. The
following chapters are dedicated to the vanious subject areas of computer graphics. Each chapter begins
with the nccessary background information (e.g., context and terminology) and a summary account of the
material to be discussed in subsequent sections.

We strive 1o provide clear explanation and inter-subject continuity in our presentation. [lustrative
examples are used freely to substantiate discussion on abstract concepts. While the primary mission of this
book is to offer a relatively well-focused introduction to the fundamemsl theory and underiying
technology, significant varations in such matters as basic definitions and implementation protocols ane
presented in order 1o have 4 reasonably broad coverage of the figld. Tn addition, inferesting applications ars
introduced as early as possible to highlight the usefulness of the graphics technology and lo encournge
those who are eager to engage in hands-on practice.

Algorithms and programming examples are given in pscudo-code that resembles the C programming
language, which shares similar syntax and basic constructs with other widely used languages such as C4+
and Java, We hope that the relative simplicity of the C-style code presents linle grammatical difficulty and
hence makes it epsy for you to focus your attenfion on the fechnical substance of the code.

There are numerous solved problems at the end of each chapter to help remforce the theoretical
discussion. Some of the problems represent computation steps that are omitted in the fext and are
particularly valuable for those looking for further details and additional explanation. Other problems may
provide new information that supplements the main discussion in the fext,



Image Representation

A digital image, or image for short, is composed of discrete pixels or picture elements. These pixels are
arranged in o row-and-column fashion to form a rectangular picture area, sometimes referred to as a raster.
Clearly the total number of pixels in an image is a function of the size of the image and the number of
pixels per unit length (e.g. inch) in the horizontal as well as the vertical direction. This number of pixels per
it length & referred to as the resolution of the image. Thus a 3 = 2 inch image at a resolution of 300
pixels per inch would have a wodal of 540,000 pixels,

Frequently image size is given as the total number of pixels in the horizontal direction times the total
pumber of pixcls n the vertical direction (e.g., 512 = 512, 640 = 480, or 1024 = T68). Although this
convention mekes it relatively straightforward to gauge the total number of pixels in an image, it does not
specify the flec of the image or its resolution, as defined in the paragraph above. A 640 x 480 image would
measure 6% mches by 5 inches when presented (e.g., displayed or printed) at 9% pixels per inch. On the
other it would measure 1.6 inches by 1.2 inches at 400 pixels per inch.

The ratio o an image's width to its height, measured in unit length or number of pixels, is referred to
A8 [1% aspect mtio. Both a 2 x 2 inch image and a 512 x 512 image have an aspect ratio of 1,1, whereas
oth 8 6 % 44 inch image and a 1024 = 768 image have an aspect ratio of 4/3.

i pixncls in an image can be referenced by their coordinates, Typically the pixe] at the lower
left comer of @n image is considered to be at the origin (0, 0) of a pixel coordinate system. Thus the pixel at
the lower might cormer of a 640 = 430 image would have coordinates (639,0), whereas the pixel at the
upper fght comer would have coondinates (639, 479),

The @k of composing an image on a compuber is essenbially a matter of setting pixel values, The
collective effects of the pixels taking on different color attibutes give us whatl we see as a picture. In this
chapter we first introduce the basics of the most prevailing color specification method in computer graphics
(Sect. 215 We then discuss the representation of mages using direct coding of pixel colors (Sect, 2.2)
versus using the lookup-table approach (Sect. 2.3). Following a discussion of the working principles of two
representative Imegc presentation devices, the display monitor (Sect. 2.4) and the printer (Sect. 2.5), we
EXamine image filcs as the primary means of image storage and transmission (Sect. 2.6). We then take a
look &t some of the most primitive graphics operations, which primarily deal with setting the color
attribasies of pixels (Sect. 2.7). Finally, to illustrate the construction of beautiful images directly in the
discrele wmage =pace, we introduce the mathematical background and detail the algorithmic aspects of
visualizing the Mandelbrot set (Sect, 2.8).
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1.1 THE RGE COLOR MODEL

Color s o complex, interdisciplinary subject spanning from physics 1o psychology. In this section we
only introduce the basics of the most widely used color representation method iIn compuier graphics, We
will have addihonal discussion later in another chapier,

Figure 2-1 shows a color coordinate system with three primary colors: B (red), G {green), and B
(blue), Each primary color can take on an infensity value ranging from 0 (off—lowest) o | jon—highesr).
Mixing these thres primary colors at different intensity levels produces a vamiety of colors. The collection
of all the colors obtainable by such a hnear combination of red, green, and blue forms the cube-shaped
RGE color space, The comer of the RGB color cobe that 1s at the ongin of the coordmnate system
corresponds to black, wheress the comer of the cube that is diagonally epposite to the origin represents
white, The diagonal line connecting Mack and white corresponds to all the gray colors between black and
wihite, It is called the gray axis.

A
Ereen {0 L. Oy yellow
{1, 1,4
ovEn & L whiwe
i, 1, 13 ] i, 1,11 |
r ".'-.._‘_
black gy [y R
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(L0 1)
" (1 ) i

Fig. 3-1 The RGHE color space.

Given this RGB color model an arbitrary color within the cubic color space can be specified by its
color coordinates: (#, g, B). For example, we have (0, 0, 0% for black, {1, 1, 1} for white, {1, 1,00 for vellow,
etc, A gray color at (0.7,0.7,0.7) has an intensity halfwoy between one at (0.9, 0.9,0.9) and one at
(0.5, 0.5,0.3),

Caolor specification using the RGB model 5 an additive process. We begin with black and add on the
appropriate primary components to yvield a desired color. This closely matches the working principles of
the display monitor (see Sect. 2.4). On the other kand, there is 8 complementary color model, called the
CMY color model, that defines colors using a subtractive process, which closely matches the working
principles of the printer {see Sect. 2.5).

In the CMY model we begin with white and fake away the appropriate primary components to vield a
desired color. For example, if we subtract red from white, what remains consists of green and bloe, which
is cyan. Looking at this from another perspective, we can use the amount of cyan, the complementary color
of red, to comtrol the amount of red, which is equal o one minus the amount of cvan. Figure 2-2 shows a
coordinate system using the three primaries” complementary colors; C (cyan), M (magenta), and Y
{yellow). The comer of the CMY color cube that is at (0, 0, 0) corresponds to white, whereas the corner of
the cube that 1= at {1, 1, 1} represenis black (mo red, no green, no Blueg), The following formolas summarize
the conversion between the two color models:

(§)-()-(¢) (2)-()-)
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Fig. 2-2 The UMY color space,

2.2 DMRECT CODING

Image representation is essentially the representation of pixel colors. Using direct coding we allocate &
certain amount of storage space for each pixel to code its color. For example, we may allocate 3 bits for
each pixel, with one bit for each primary color (see Fig. 2-3). This 3-bit representation allows each primary
to vary independently between two intensity levels: O (off) or 1 (on). Hence each pixel can take on one of
the eight colors that correspond fo the comers of the RGE color cobe,

Bat I r kit X 7 bit 3: & caoler pame
i i fl binck
) 1 | e
[ I 0 (el
o 1 ] oyEn
i il i red
i L] t fu-the s
1 1 0 vellow
1 1 i while

Fig. 2-3 Direct coding of colors using 3 hiis,

A widely aceepted industry standard uses 3 byies, or 24 bits, per pixel, with one byte for cach proimary
color. This way we allow each primary color to have 256 different intensity levels, cormesponding to binary
values from Q0000000 o F1111111, Thus a pixel can take on a color from 256 x 256 = 256 or 16.7
million possible choices. This 24-bit format is commonly referred to as the frue color representation, for
the difference between two colors that differ by one intensity level in one or more of the primaries is
virteally undetectable under normal viewing conditions. Hence a more precise representation involving
more bits is of little use in terms of perceived color accuracy.

A notable special case of direct coding is the representation of black-and-white (bilevel) and gray-scale
images, where the three primaries always have the same value and hence need not be coded separately, A
black-and-white image requires only one bit per pixel, with hit valug 0 representing black and 1
representing white. A gray-scale image is typically coded with & bits per pixel o allow a total of 256
intensity of gray levels,

Although this direct coding method features simplicity and has supporied a variety of applications, we
can se¢ a relatively high demand for storage space when it comes to the 24-bit standurd. For example, a
1000 = [0 true color image would take up three million bytes, Furthermore, even if every pixel in that
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image had a different color, there would only be one million colors in the image. In many applications the
pumber of colors that appear in any one particular image is much less. Therefore the 24-bit representation’s
ability to have 16.7 million different colors appear simultaneously in a single image scems fo be somewhat
overkill.

23 LOOKUF TABLE

Image representation using a lookup table can be viewed a5 a compromise between our desire to have a
Iowver slorage requirement and our need to support a reasonably sufficient number of simultaneons colors.
In this approach pixel values do mot code colors directlv. Instead, they are addresses or indices into a table
of color values. The color of a particular pixel is determined by the color value in the table eniry that the
value of the pixel references.

Figare 2-4 shows a leokup table with 256 entries. The entnes have addresses 0 through 235, Each
eriry containg a 24=bit RGB color valuwe. Pixel values are now 1-bie, or B-bit, quantities, The color of a
pixel whose value is §, where 0 =4 = 255, 18 determined by the color value in the table entry whose
address 15 §, This 24-bit 256-enitry Iookup table representation 15 often referred 1o as the B-bit formai. It
reduces the storage requirement of a 1000 = 1000 image to one million bytes plus 768 bytes for the color
vaiues in the lookup table. Tt allows 256 simultaneous colors that are chosen from 16.7 million possible
coloss,

I-'l — —— -
|
T
| I— > r [ h
Hehit pimel value
155
- 24 birs »

(B huls pew promary

Fig. 24 A 24-hit Z536-entry lookup tabie,

It is important to remember that, using the lookup table representation, an image is defined not only by
its pixel values but also by the color valoes in the corresponding lookup table, Those color values form a
eolor map for the image,

24 DISPLAY MONITOR

Among the numeroas ypes of image presentation or oulput devices that converl digitally represented
images inlo visually perceivable pictures is the display or video monitor,

We first fake a look at the working principle of a monochromatic display monitor, which consists
mainty of a cathode my tube (CRT) along with related control circuits. The CRT is a wacuum glass tube
with the display screen at one end and connectors to the control circuits af the other (see Fig. 2-5). Coated
on the inside of the display screen is a special material, called phosphor, which emits light for a period of
time when hit by a beam of electrons, The color of the light and the dme period vary from one tyvpe of
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Fig. -5 Anatomy of & monochromatic CRT.

phosphor to another. The light given off by the phosphor during exposure o the electron beam is known as
flucrescence, the confinuing glow given off after he beam is removed is known as phosphorescence, and
the duration of phosphorescence is known as the phosphor’s persistence.

Opposite 1o the phosphor-conted screen 15 an electron gun that 15 heated to send out electrons. The
electrons are regulated by the control electrode and forced by the focusing electrode into & namow beam
striking the phosphor coating at small spots. When this electron beam passes through the horizontal and
vertical deflection plates, it is bent or deflected by the electric fields between the plates. The horizontal
plutes control the beam Lo scan from lefi o right and retrace from right to lefl. The vertical plates control
the beam to go from the first scan hine at the top to the last scan ling &t the bottom and retrece from the
bottom hack to the top. These actions are synchronized by the control circuits so that the electron beam
girtkes each and every pixel pogition in & scan line by scan line fashion. As an altermative to this
electrostatic deflection method, some CRTs use magnetic deflection coils mounted on the outside of the
glazz envelope to bend the electron beam with magnetic fields,

The intensity of the light emitted by the phosphor coating is a function of the infensity of the electron
beam. The control circuits shut off the electron beam during horizontal and vertical retraces. The intensity
of the beam at a particolar pixel position is determined by the intensity value of the comesponding pixel in
the image being displayed.

The image being displayed is stored in a dedicated system memory area that is often referred to as the
frame buffer or refresh buffer. The control circuits associated with the frame buffer generate proper video
signals for the display monitor. The frequency at which the content of the frame buffer &5 sent to the display
monitor is called the refreshing rate, which is typically 60 times or frames per sscond (60 Hz) or higher. A
determining factor here is the need to avoid flicker, which occurs at lower refreshing rates when our visual
system 15 unable to mtegrate the light impulses from the phosphor dois into a steady picture. The
persistence of the monttor's phosphor, on the other hand, needs 10 be long enough for 2 frame 0 remain
visible but short enough for it to fade before the next frame is displaved.

Some monitors use a technique called interlacing o “double™ their refreshing rate. In this case only
half of the scan lines in a frame is refreshed at a tme, first the odd numbered lines, then the even numbered
lines, Thius the screen is refreshed from top to bottom in half the time it would have taken to sweep actoss
all the scan lines, Although this approach does nol really increase the rate at which the entire screen is
refreshed, it is guite effective in reducing flicker.
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Color Display

Moving on to color displays there are now three electron guns instead of one inside the CRT (see Fig.
2-6), with one electron gun for each pnmary color. The phosphor coating on the inside of the display
screen consists of dot patterns of three different types of phosphors. These phosphors are capable of
emitting red, green, and blue light, respectively. The distance between the center of the dot patterns is
called the pilch of the color CRT. It places an upper limit on the number of addressable positions on the
display area. A thin medal screen called a shadow mask is placed between the phosphor coating and the
electron guns. The tiny holes on the shadow mask construin each electron beam to hit its corresponding
phosphor dots. When viewed at a certain distance, light emitted by the three types of phosphors blends
together to give us & broad range of cobors.

Fig. 346 Color CRT using a3 shadow mask.

1.5 PRINTER

Another typical image presentation device 15 the printer. A prnter deposits color pigments onio a pont
media, changing the light reflected from its surface and making it possible for us fo see the print result.

Given the fact that the most commonly used print media is a piece of white paper, we can in principle
utilize three types of pigments (cyan, magenta, and yellow) to regulate the amount of red, green, and blue
light reflected to yield all RGE colors (see Sect. 2.1). However, in practice, an additional black pigment is
often used due 1o the relatively high cost of color pigmends and the technical difficulty associated with
producing high-quality black from several color pigments.

While some pnnting methods allow color pigments to blend together, in many cases the vanous color
pigments remain separate n the form of tiny dots on the pant media. Furthermore, the pigmenis are ofien
deposited with a limited number of intensity bevels, There are various techniques to achieve the effect of
multiple intensity levels beyond what the pigment deposits can offer. Most of these techniques can also be
adapted by the display devices that we have just diseossed in the previous section.

Halftoning

Lets first take a look at & traditional technigue called halftoning from the printing industry for bilevel
devices. This fechnique uses varably sized pigment dots that, when viewed from a certain distance, blend
with the white background o give us the sensation of varying intensity levels. These dots are arranged in a
pattern that forms a 457 screen angle with the horizon (see Fig. 2-7 where the dots are enlarged for
illustration ), The size of the dets is inversely proportional 1o the intended intensity level, When viewed at a
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far enough distance, the stripe in Fig. 2-7 exhibits 2 gradual shading from white (high infensity) on the left
to black (low intensity) on the right. An image produced using this technique is called a halfione. In
practice, newspaper halfiones use 60 to BD dots per inch, whereas book and magazine halftones use 120 to
200 dodz per inch,

Fig. 3-7 A halftone stripe.

Halftone Approximation

Instead of changing dot size we can approximate the kalftone technigue using pixel-grid patterns. For
example, with a 2 = 2 bilevel pixel grid we can construct five grid patterns to produce five overall intensity
levels (see Fig, 2-8). We can increase the number of overall intensity levels by increasing the size of the
pixel grid (see the following paragraphs for an example). On the other hand, if the pixels can be st to
mubtiple intensity levels, evena 2 x 2 grid can produce a relatively high number of overall intensity levels.
For example, if the pixels can be intensified to four different levels, we can follow the patiern sequence in
Fig. 2-8 to bring each pixel from onc intensity level to the next o approximate a total of thirteen overall
intensity levels (one for all pixels off and four for cach of the three non-zere intensities, see Fig, 2-9).

ul| " | B

Fig. 2-8 Halflone approximation,
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Fig. 2-9 HalBone approximation with 13 imensity levels

These halftone gnd patterns are sometimes referred to as dither patlerns. There are several
congiderations in the design of dither patierns. First, the pixels should be intensified in a growth-from-
the-grid-center fashion in order to mimic the growth of dot size. Second, a pixel that is intensified o a
certain level o approximate a particular overall intensity should remain &t least af that level for all
subsequent overall intensity levels, In other words, the patterns should evolve from one o the next in order
o minimize the differences in the patterns for successive overall intensity levels, Third, symmetry should
be avolded in onder 1o minimiee visual artifacts such ag sireaks that would show up in image areas of
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uniform imtensity. Fourth, msolated “on” pixels shoubd be svolded since they are sometimes hand 1o

reproduce,
We can use a dither matmx to represent 8 serics of dither paticms. For example, the folloaang 3 = 3

mEtrx:
5
1
i)

represents the order in which pixels ina 3 = 3 grid are to be intensified. For bilevel reproduction, this gives
us ten intensity levels from level O to level %, and mtensity level 115 achieved by tuming on all pixels that
correspond fo values in the dither matrix that are lcss than 1. If cach pixel can be intensified to three
different bevels, we follow the order defined by the mamrix to sct the pixels o their middle intensity level
and then o their high intensity level to approximate a iofal of nineteen overall imlensity levels.

This halftone approximation technigue is readily applicable to the reproduction of color images. All
we need is to replace the dot at each pixel position with an RGEB or CMY dot pattern (e.z., the mad pattemn
shown in Fig, 2-6) If we use a 2 = 2 pixel gnd and each primary or its complement can take on fwo
infensity levels, we achieve a todal of 5 x 5 ® § = 125 color combinations.

At this point we can tum 1o the fact that halfione approximation is a technigue that trudes spatial
resolution for more colors/mtensity levels, For a device that s capable of producing images ai a resolution
of 400 = 400 pixels per inch, halftone approximation using 2 > 2 dither patierns would mean lowering its
resolution effectively to 200 » 200 pixels per inch.

R =N
da L =]

Dithering

A technique called dithenng can be used to approximate halfiones without reducing spatial resolution.
In this approach the dither matnix is treated very much like a floor tile that can be repeatedly positioned one
copy next to another to cover the entire Aoor, Le,, the image, A pixel at {x, ¥} is intensified if the intensity
level of the image af that position is greater than the corresponding value in the dither matrix,
Mathematically, if D, stands for an n x » dither matrix, the clement 300, /) that cormesponds to pixel
position {x, ¥) can be found by { = ¥ mod » and j = v mod #. For example, if we use the 3 x 3 matrix
given earlier for a bilevel reproduction and the pixel of the image at position (2, 19) has intensity level 3,
then the corresponding matrix element is Dy(2, 1) = 3, and hence a dot should be printed or displayed at
that location.

[t should be noted that, for image arcas that have constant infensity, the results of dithering are exactly
the same as the results of halftone approximation. Reproduction differences berween these two methods
occur only when intensity vanes.

Error Diffusion

Another technique for continuous-tone reproduction without sacrificing spatial resolution is called the
Floyd-Steinberg error diffusion. Here a pixel is printed vsing the closest intensity the device can deliver.
The error term, i.e., the difference between the exact pixel value and the approsimated value m the
reproducticn, is then propagated 1o several vel-io-be-processed neighboring pixels for compensation, More
specifically, let § be the source imape that is processed in a lefi-to-nght and top-to-bottom pixel order,
&1x, v} be the pixel value at location (x, v}, and & be 5(x, v} minus the approximated value, We update the
value of the pixel’s four neighbors (one to its right and three in the next scan line) as follows:

S+ 1, = 8x+ 1.5+ ae
Sx—=1y-D=8x—-1,y=1)+be
Sz, y— D =8xy—1)+ce
Sx+1ly—-ND=8x+1,py—1)+de
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where parameters o through o often take values . 5, ;. and {5, respectively. These modifications are for
the purpose of using the neighboring pixels to offset the reproduction error at the current pixel location.
They are not permanent changes made to the onginal image,

Consider, for example, the reproduction of a gray scale image (0: black, 255: white) on a bilevel device
(level 0: black, level 1: white), if a pixel whose current value is 96 has just been l'ﬂ-lp-pldti.‘.l level 0, we have
& = 9% for this pixel location. The value of the pixel to its right is now increased by 96 x & iz = 42 in order
to determine the appropriate reproduction level. This incréement tends 1o cause such neighboring pixel 1o be
repridbuced ot o higher I.:I'II.I:I1.FII]|" level, partially compensating the discrepancy brought on by mapping
value 96 fo level O (which is lower than the sctual pixel value) at the current location. The other thres
neighboring pixels [one below and to the left, one immediately below, and one below and 1o the nght)
recerve 18, 30, and 6 as their share of the reproduction érror at the current location, respectively.

Results produced by this error diffusion algonthm are generally satisfactory, with occasional
introduction of slight echoing of certain image parts. Improved performance can sometimes be obtained
by alicrmating scanning direction between lefi-io-right and right-to-left (minor modifications need to be
made o the above formulas),

1.6 IMAGE FILES

A digital image is often encoded in the form of a binary file for the purpose of storage and
transmission. Among the mumerous encoding formats are BMP (Windows Bitmap), JPEG (Joint
Photographic Experts Group File Interchange Format), and TIFF (Tagged Image File Format)., Ahbough
these formats differ in techmical details, they share stroctural similarities,

Figure 2-10 shows the typical organization of information encoded in an image file. The file consists
largety of two parts: header and image data. In the beginning of the file header a binary code or ASCII
siring identifics the format being used, possibly along with the version number. The wadth and height of the
image arc given in nombers of pinels. Common image types include black and white (1 kit per pixel), 8-bit
grity scabe (256 levels along the gray axis), B-bit colos (lookup able), and 24-bit color. Image data format
specifies the order in which pixel values are stored in the mmage dala section. A commonly used order is left
1o right and op (o botom. Another possible arder is left to rght and bottom to top. Image data format also
specifies if the ROB values in the color map or in the image are interlaced. When the values are groen inan
interleced fashion, the three primary color components for a particular lookup table eniry or a particular
pixel stay together consecutively, followed by the three color components for the next entry or pinel. Thus
the color values in the image data section are a sequence of red, green, blue, red, green, Blue, étec. When the
values are given in a non-interlaced fashion, the values of one prmary for all table entries or pixels appear

,
Formmab'venson sdeniificaiion

Insape widhth and hoight in pincls Feader
Iirtsnge rype
Insge dlat, fraa

Compression type
.

Color nap {5 ey ¥_
| lrage dia
Fizel valinss

Flg. 2-10  Typical image file formast
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first, then the values of another primary, followed by the values of the third primary. Thus the image data
are in the form of red, red, ..., gréen, green, .. ., blue, blue, .. ..

The values in the image data section may be compressed, using such compression algorithms as run-
length encoding (RLE). The basic idea behind RLE can be illustrated with a character string
“sxxaxxyviezez”, which takes 12 bvtes of storage. Now if we scan the string from left o right for
segments of repeating characters and replace each sepment by & 1-byte repeat couni followed by the
character being repeated, we convert or compress the given string to “6x2v42”, which takes only 6 bytes.
This compressed version can be expanded or decompressed by repeating the character followmg each
repeat count to recover the original string.

The length of the file header iz ofien fixed, for otherwisze it would be necessary o include length
information in the header fo indicate where image data stants (some formats include header length anyway).
The length of each individual component in the image data section is, on the other hand, dependent on such
factorz as image type and compression fype. Such information, along with additional format-specific
information, can also be found in the header.

3.7 SETTING THE COLOR ATTRIBUTES OF PIXELS

Setting the color attributes of individual pixels is arguably the most primitive graphics operation. It is
typically done by making system library calls to wrile the respective values into the frame buffer. An
aggregate data struciure, such as a three-clement array, 15 often used to represent the three primary color
components, Regardless of image type (direct coding versus lookup table), there are two possible protocols
For the specification of pixel coordinates and color values.

In one protocol the application provides both coordinate mformation and color information
simultaneously. Thus a call to set the pixel at location (x, ¥) in 2 24-bit image to color {r, g. &) would
ook like

setPixel(x, y, rgh)

where rgh is a three-glement array with rgh[0] = F, reb[l] = g, and reb{2] = b. On the other hand, if the
image uses a lookup table then, assunung that the color is defined in the table, the call would look like

setPixelix, v. i)

where § is the address of the eatry containing (v, g, b
Another protocol is based on the existence of a current color, which 15 maintained by the system and
can be set by calls that look like

getColon{ruh)
for direct coding, or
getColon(i}

for the lookup table representation. Calls io set pixels now need only to provide coordinate information and
waolukd look like

setPixelix, v)

for both inzage types. The graphics systemn will automatically vae the most recently specified current colos

o carry oul the operation.
Lookup table entries can be sef from the application by a call that looks like

setEntry(r, reh)

which puts color (r, g, b) in the entry whose address is i. Conversely, values in the bookup table can be read
back o the application with a call that looks like

gelEntry(i, rgb)
which returns the color value in entry § through array parameter b,
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There are sometimes two versions of the calls that specify RGE valoes, One takes RGB values as
fioating point numbers in the mnge of [0.0, 1.0], whereas the other takes them as integers in the range of
[, 255]. Although the floating point version is handy when the color values come from some continuous
formula, the floating point values are mapped by the graphics sysiem into infeger values before being
written into the frame buffer.

In order to provide basic support for pixel-based image-processing operations there are calls that look
like

getPixel(x, v, reh)
for direct coding or
gotPixel(x. v, i}

for the lookup table representation to refurn the color or mdex value of the pixel at {x, ¥} back to the
application.

There are alse calls that read and write rectangular blocks of pixels. A usefil example would be a call
to set all pixels to a certain background color. Assuming that the system uses a current color we would first
set the current color 1o be the desired background color, and then make a call that looks like:

chear()

o achieve the goal.

2.8 EXAMPLE: VISUALIZING THE MANDELBROT SET

An elegant and illustrative example showing the construction of beautiful images by setting the color
attributes of individual pixels directly from the application is the visualization of the Mandelbrot set, This
remarkable set is based on the following transformation:

Tys) = .:.'E + 2

where both x and z represent complex numbers. For readers who are unfamiliar with complex numbers it
suffices to know that a complex number iz defined in the form of 2 + & Here both « and & are real
ramibers; o is called the real part of the complex nember and b the imaginary part (identified by the special
symbol i), The magnitude of a + M, denoted by la + bil, is equal to the square root of a® + 5. The sum of
two complex numbers a 4+ bi and ¢ <+ &7 15 defined to be (o 4+ ) + (b + ). The product of o 4 bi and
& + di is defined to be (ac — bd) + (ad + be)i. Thus the square of @ -+ bi is equal to (g* = &) + 2abi. For
example, the sum of 0.5 4+ 207 and 1.0 = LV is 1.5 4 1.04. The product of the two iz 2.5 4 150, The
square of 0.5 + 2.0V is =3.75 4 2.0¢ and the square of 1.0 = L0 is 0,0 = 2.04

The Mandelbrot set is the set of complex numbers z that do not diverge under the above transformation
with x, = 0 {both the real and imaginary parts of x; are 0). In other words, to determine if a particular
complex nmumber = is 2 member of the set, we begin with x, =0, followed by x; =1ﬁ 4z
PR ST R S R If |x| goes towards infinity when » increases, then 2 is not a mem-
ber. Otherwise, = belongs 1o the Mandelbrot set.

Figure 2-11 shows how to produce a discrete snapshot of the Mandelbrot set. On the left hand side is
the complex plane where the horizontal axis Re measures the real part of complex numbers and the vertical
axis Im measures the imaginary part. Hence an arbitrary complex number = corresponds to a point in the
complex plane, Our goal is to produce an image of width by height (in mombers of pixels) that depicts the =
vahues in a rectangular area defined by (He_min, [m_min) and (Re_max, Im_max). This reciangular area
has the same aspect ratio as the image 50 a8 not (o introduce peometric distortion. We subdivide the area to
match the pixel grid in the mage. The color of a pixel, shown as a hittle square in the pixel grid is
determined by the complex number z that corresponds to the lower left comer of the hittle square. Although
only width = height points in the complex plane are used to compute the image, this pelatively
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Fig. 2-11 Vusualizing the Mandelbrot set.

siraighiforward approach to discrete sampling produces reasonably good approximations for the purpose of
visualizing the set.

Thers are many ways 10 decide the color of a pixel based on the corresponding complex number z.
What we do here s to produce a gray scale image where the gray level of a non-black pixel represents
proportionally the number of iterations it takes for |x] to be greater than 2. We use 2 as a threshold for
divergence because x diverges quickly under the given transformation once |x| becomes greater than 2. If
|x| remains less than or equal to 2 afier a preset maximum mumber of ilerations, we simply set the pixel
value to 0 (black).

The fellowing pseudo-code implements what we have discussed in the above paragraphs. We use N to
represent the maximum number of iterations, z.real the real part of 7, and z.imag the imaginary part of z.
We also assume a 256-entry gray scale lookup table where the color value in entry i is (7. 7, f). The formuola
in the second call to setColor is 10 obtain a proportional mapping from [0, ¥] o [1,255]:

int i, f, count;

float delta = (Re_max ~ Re_min)width;

for {i = 0, zoreal = Re_min; i = width; § 4+ , z.real+ = delta)
for ( j = 0, z.imag = Im_min; j = height; 74+, z.imag+ = delta) §
count = (I
complex number x =
while {|x] <= 2.0 && count < N} |
compuie ¥ = x° +
GO+

i
if ([x] <= 2.0) setColor(D);
else setColon1 4+ 254*count/N;
setPixel(i, /)
}

The image in Fig. 2-12 shows what is nicknamed the Mandelbrot bug, It visualizes an area where
=20 =<z real = 0.5 and —1.25 < z. imag = 1.25 with N = 64, Most z values that are ouigide the area
lead = 1o diverge quickly, whereas the = values in the black region belong to the Mandelbrot set. It 15 along
the contour of the bug-like figure that we see the most dynamic alterations between divergence and non-
divergence, together with the most significant varations in the number of terations used in the divergence
test. The brighter a pixel, the longer it took to conclude divergence for the corresponding z. In principle the
rectangular area can be reduced indefinitely to 2oo0m n on any active region to show more miricate details,
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Fig. 2-12 The Mandelbrod set

Julia Sets

Mow if we set r to some fixed non-zero value and vary x; across the complex plane, we obtain a set of
non-divergence numbers (values of x; that do not diverge under the given transformation) that form a Julia
set. Different z values lead o different Julia sets. The image in Fig. 2-13 is produced by making shight
modifications to the pseudo-code for the Mandelbrot set. Tt shows the Julia set defined by
#= —0.74543 4 0.11300f with —1.2 = zpreal < 1.2, —1.2 < x.imag < 1.2, and N = 128,

Fig. 213 A Julia set

Solved Problems

F | What is the resolution of an image?
SOLUTION

The number of pixels (Le, piciure clements) per unit length (e.g.. inch) in the horizontal as well as
vertical direction.

2.2 Compute the size of a 640 = 480 image at 240 pixels per inch.

SOLUTION
640,240 by 480,240 or 2§ by 2 inches.
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2.3

2.4

1.5

1.6
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2.9

210

311

Compute the resolution of a 2 x 2 inch image that has 512 = 312 pixels.
SOLUTION
512/2 or 256 pixels per inch.

What is an image’s aspect ratio?
SOLUTION
The ratio of its widih to its height, measured in unit leagth or aumber of pixels.

If an image has a height of 2 inches and an aspect raten of 1.5, what is is width?
SOLUTION
width = 1.5 x height = 1.5 » 2 = 3 inches,

If we want to resize a 1024 x 768 image to one that is 640 pixels wide with the same aspect rafio,
what would be the height of the resized image?

SOLUTION
height = 640 x 768/1024 = 430,

If we want to cut & 512 = 512 sub-image out from the center of an 800 x 600 image, what are the
coordinates of the pixel in the large image that is at the lower left corner of the small image?

SOLUTION
[(BDO — 512172, (60 — 512)/2] = {144, 44).

Sometimes the pixel at the upper lefi comer of an image is considered o be at the ongin of the pixel
coordinate system (3 left-handed sysiem). How to convert the coordinates of & pixel at (x, ¥) i this
coordinate system into its coordinates (x', ') in the lower-lefl-comer-as-origin coordinate gystem (2
right-handed sysiem)?

SOLUTION
(', %) = {x, m — v — |} where m 15 the number of pixels in the vertical direction,

Find the CMY coordinates of a color at (0.2, 1, 0.5) in the RGB space.
SOLUTION
(—02 1—1,1 -03% = (080035,

Find the RGB coordinates of 2 color af (0.15,0.75,0) in the CMY space,
SOLUTION
(1 =015, 1 =0.75 1 - 0) = (.85, D25, 1).

If we use direct coding of RGB values with 2 bits per primary color, how many possible colors do
we have for each pixel?
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If we use direct coding of RGB values with 10 bits per prmary color, how mamy possible colors do
we have for each pixel?

SOLUTION
2% 5 W 218 = 1024 = 1073,741,.824 = 1 billion.

The direct coding method is flexible in that it allows the allocation of a different number of bits 1o
each primary color. If we use 5 bits each for red and blue and & bits for green for a total of 16 bits
per pixel, how many possible simultansous colors do we have?

SOLUTION
2 x P w2 =2" = 65,536

If we use 12-bit pixel values in a lookup table representation, how many entries does the lookup
iable have?

SOLUTION
217 = A

If we use 2-byte pixel values in a 24-bit lookup table representation, how many bytes does the
loakup table occupy™?

SOLUTION
2'% x 248 = 65,536 = 3 = 196,608,

True or false: fucrescence is the term used to describe the light given off by a phosphor after it has
been exposed o an electron beam, Explain your answer,

SOLUTIOMN

False, Phosphorescence is the correct term. Floorescence refiers to the lipht given off by o phosphor while
it 1% being exposed 0 an electron besimn.

What is persistence?
SOLUTION
The duration of phosphorescence exhibited by 3 phosphor,

What is the function of the control electrode in a CRT?
SOLUTHON
Regulate the intensity of the electron beam.

Name the two methods by which an electron beam can be bent?
SOLUTION
Electrostatic deflection and magmetic deflection,
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What do you call the path the electron beam takes when returning to the left side of the CRT screen?
SOLUTION
Honzontal retrace.

What do you call the path the electron beam takes at the end of each refresh cycle?
SOLUTION
Vertical reirace,

What is the pitch of a color CRT?
SOLUTION
The distance between the center of the phosphor dod patterns on the inside of the display screen,

Why do many color printers use black pigment?
SOLUTION

Color pigments (cyan, magenta, and vellow) are felatively more expensive and it i technically difficall to
pn.ﬂi.l.l:e h'igl'l-tpa.'li.l:,.' hlack l.u:i.n' several color piirr:-m'l.'a:.

Show that with an n » n pixel gnd, where each pixel can take on m intensity levels, we can
approccimate ® o« % (m — 1)+ 1 overall intensity levels.

SOLUTION

Since the r = n pinels can be =8 o a nob-2er0 intensity valee one after anather o produce @ = & ovesall
intensity bevels, and there are m — | non-zero meensity levels for the individual pixels, we can approximate a
todal of % § ® {m — 1} pon-nero averal]l miensity levels. Finally we noed o add one mone overall indensity
kevel that correspanids fo zero miensity (all pels off),

Represent the gnid patterns in Fig. 3-8 with a dither matrix.
SOLUTION

n 2

E

What are the ermor propagation formulas for a top-to-bottom and aght-to-left scanning order in the
Floyd—Sieinberg error diffusion algorithm?

SOLUTION
Hx— 1 =8x— 1%+ ae
Sl y=1)=58x4+ 1 p=1)+be
S, p— 1) =8z, p— 1)+ e
ll!ll{-r_ IIJ"_ l:|=.5'{.1'-'1-.!"'H+dE
What is RLE?
SOLUTION

RLE smnds for nan-length encoding, a technique for image dota compression.,
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218 Follow the illustrative example in the text to reconstruct the string that has been compressed to
“O81435" using ELE.

SOLUTION
“EERRRRERRASIN"

219 If an 3-hit groy scale image is stored uncompressed in sequential memory or moan image file m left-
to-right and bottom-to-top pixel order, what is the offset or displacement of the byte for the pixel at
i, ¥} from the beginning of the memory segment or the file's image data section’?

SOLUTION
offset = y = m + x where & is the number of pizels in the horizonta]l direction.

230  What if the image in Prob. 2.29 is stored in lefi-to-right and top-to-bottom order?
SOLUTION

offset = (mi = p = w4 x where # and m ame the number of pixels in the honzontal and vertical
direction, respectively.

131 Develop a pseedo-code segment to initialize a 24-bit 256-entry lookup table with gray-scale values.
SOLUTION

int i, Feh[3];

for {i =0, § = 256; i++) |
rh{l] = rghl1] = rgt{2) = &
setErni{d. mgh)s

|

232 Develop a pseudo-code segment to swap the red and green components of all colors in a 256-entry
lenkup table.

SOLUTION

imt £, x. rgb{3];
for i =10, & = 256 (++) |
getEntry(/, reky
x = reb{0];
rgbf0] = rgb{1]:
reb{l] = =
setEnteyd. rebl;

233  Develop a pseudo-code segment to draw a rectangular area of w = & {in number of pixels) that starts
at {x, ) using color rgh,
SOLUTION
int 1, f;
se1Codon] mnh);
for (f=pj<y+h ith)
for (i = x7 § = & + wi i) setPixel{i, /1;
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Develop o psewdo-code segment 1o draw a tnangular area with the three vertices at (x, ¥, (x, ¥ + 11,
and (x 4 7, ¥), where mnteger ¢ = 0, using color rgh,
SOLUTION
m i s
sebColor(rgl;
for (f =y j <=y+ 15 )
for (i = 25 § =5+ ¥+ 1 — 5 i+8) setPizeli, i)

Develop a pseudo-code sepment o reset every pixel in an image that is in the 24-bit 256-entry
lookup table representation to ifs complementary color.

SOLUTION

int {, xeb|3];
for (f = § < 256; ) 1
petEntryli, rgh);
rehfi] = 255 — rgh{ll];
rebl] = 255 — rph|1];
red2] = 255 — rgh|2];
setEntry i, rell
F

What if the image in Prob. 2.35 15 in the 24-bit true color representation?
SOLUTION

it 4. J, rgb{3]:
for { § = @ § = height; =)
for (f = 0 § < widih; #++) {
getPixel{s. f, gkl
M) = 255 — {0
reM1] = 255 — rgh{1]:
reb{l] = 155 = rgh{2];
setPixel(i. j. rab);
}

Calculate the sum and product of 0.5 + 2.0/ and 1.0 = 1.04
SOLUTION

(0.5 4+ LO)+ (2.0 4 (=100 = 1.5 4 10§
(0.5 % 10— 2.0 x (= L0+ (0.5 % (=100 + 2.0 = 10N =25+ 1.5i

Calculate the square of the two complex numbers in Prob, 2.37.
SOLUTION

(0.5 = 20P) 42 % 0.5 > 200 = =3.75 + 200
(10F = (=1.00°) & 2 5 1O % (=100 = 0.0~ 2.0¢

Show that 14 254 x count/N provides a proportional mapping from count in [0,N] to ¢ in
[1,255].
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SOLUTION
Proportional mapping means that we want
(e = 13/{235 = 1} = (count — 0) /(N = &}
Hence ¢ = 1 4 254 = count /N,

240  Modify the pseudo code for visualizing the Mandelbrot set to visualize the Julia sets,
SOLUTION

mi §, j, coEnt;
float defln = (Ke_max = Ka_min}Fwidth;
fior (i = 0, xreal = Be_min; | < width; 4+, rrealt = delia)
for { f = 0, x.imag = lm_min; / < beight 4+, ximag+ = delia) |

coant = 1

while {|x} =< 2.0 £& count < &) |
compute x = 1 +3;
Coune;

¥

if (J1] = 2.00 seeColonl;

else setColon 1 + 254 count™');
setPixedli, i;

241 How to aveid the calculatton of square root in an actual implementation of the algorithms for
visualizing the Mandelbrot and Julia sets?

SOLUTION
Test for |xf* < 4.0 instead of |x| < 2.0.

Supplementary Problems
143 Cana 5 by 3} inch image be presented at 6 by 4 inch without introducing geometric distortion?
243 Refering to Prob. 2.42, what if the original is 5} by 31 inch?
244 Given the portrait image of & person, describe a simple way to make the person look more slender.

245  An RGB color image can be converted to o pray-scale image using the formula 02998 + 05876 + 0.1148
for pray levels (see Chap. 11, Sec. 151 under “The KTSC YIQ Color Model™). Assuming that
getPinelix, v, rel) now meads pixel values from & 24-bit input image and setPixel(x, v, §) assigns pixel
valwes W an ouwiput image that uses & gray-scale lookup wabls, develop a peewdo-code sepment o comoert
the input image to a gray-scale putput image.



Scan Conversion

from 2D drawings to projected views of 3D objects, consist of graphical primitives
ints, lines, circles, and filled polygons. These picture components are often defined in a
space at & higher level of abstraction than individual pixels in the discrete image space. For
line is defined by its two endpoints and the line equation, whereas a circle is defined by its
er position, and the circle equation. It is the responsibility of the graphics system or the
to convert each primitive from its geometric definition into a set of pixels that make up
in the image space. This conversion task 15 generally referred to as scan conversion or

of this chapier is on the mathematical and algorithmic aspects of scan conversion. We
to handle several commonly encountered primitives including points, lines, circles, ellipses,
filled regions in an efficient and effective manner. We also discuss techniques that help to
" the discrepancies between the original clement and its discrete approximation. The
of these algorithms and mathematical solutions {and many others in subsequent chapiers)
system to another and can be o the form of vanous combinations of hardware, firmware,

ical point (x, ¥) where © and ¥ are real numbers within an image area, needs to be scan-
| at location (x', ). This may be done by making +* to be the integer part of x, and ' the
In other words, x" = Floor(x) and ' = Flooriy), where function Floor returns the largest
than or equal fo the argument. Doing so in essence places the ongin of a continuous
for (x, ¥) at the lower left comer of the pixel gnd in the image space [see Fig. 3-1(al]. All
¥e=x=x+landy =y <y + | are mapped to pixel (x', '). For example, point P,

d by pixel (1,0). Points £, (2.2, 1.3) and Py (2.8, 1.9) are both represented by pixel

ch is to align the integer values in the coordinate system for (x, ¥) with the pixel
Fig. 3-1(5)). Here we scan convert (x,¥) by making x' = Floor(x + 0.5) and ' =
is essentially places the origin of the coordinate svstem for (x, v) at the center of
ints that satisfy ' — 0.5 < x < 2" + 0.5 and v — 0.5 < v < ' + 0.5 are mapped to pixel

that points P, and P; are now both represented by pixel (2, 1), whereas point Py is
pixel (3, 2).

23
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Fig. 3-1 Scan-comverting poknts,

W will assume, in the following sections, that this second approach to coordinate system alignment is
wsed, Thus all pixels are centered at the integer values of a continuous coordinate system where abstract
graphical primitives are defined.

3.1 BSCAN-CONVERTING A LINE

A line in computer graphics typically refers to a line sepment, which 15 a portion of a straight line that
extends indefinitely iIn opposite directions. It 15 defined by its two endpoints and the line equation
¥ = mix 4 b, where m is called the shope and & the v intercept of the line. In Fig. 3-2 the two endpoints ane
described by Py(x, ;) and Pylxy, ¥4 ). The line equation describes the coordinates of all the points that lie
between the two endpoints.

Py 5y wb

Fig, 3=} Defining a line,

A noie of caution: this slope—intercept equation &% not suitable for wertical lines. Horizontal, vertical,
and diagonal (|a] = 1) lines can, and often should, be handled as special cases without going through the
following scan-comversion algorthms. These commonly used lines can be mapped to the image space in a
sirughtforwand fashion for high execution eficiency.

Diirect Use of the Line Equation

A simple approach fo scan-comverting a line is to first scan-convert P, and P, to pixel coordinates
(x}. ) and (x5, ¥ ), respectively: then set m = (3% = }/{x} —x{) and b = | — mx|_ If [m| = 1, then for
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every integer value of x between and excloding x|, and 15, calculate the corresponding value of ¥ using the
equation and scan-convert (x, ¥). IF [w] = 1, then for every integer value of v between and excluding v, and
¥, calculate the corresponding value of x using the equation and scan-convert (x, ¥).

While this approach is mathematically sound, it involves floating-point computation (multiplication
and addition) in every step that uses the line equation since m and b are generally real numbers. The
challenge i5 to find a way to achieve the same goal as quickly as possible,

DDA Algorithm

The digital differential analyzer (DDA) algonthm is an incremental scan-conversion method. Such an
approach is chamctenzed by performing calculations at each step using results from the preceding step.
Suppose at step § we have calculated (x, ;) to be & point on the line, Since the next point (x5, ¥ ) should
satisfy Ap/Ax = m where Ay =y — ¥, and Ar = x,, = x. we have

.'l",l-i-l =..P| +I'HM

T = X+ AySm

These forroulas are wsed in the DDA algorithm as follows, When |[mf < 1, we start with x = 1)
{assuming that x] = x) and y =, and set Ar= 1 (Le, unit increment in the x direction). The
coordinate of each successive point on the line is calculated using v,y = y; + m. When jm| > 1, we start
with x = x| and ¥ = ¥| (assuming that y| < %), and set Ay = 1 (i.c., unit increment in the y direction). The
% eoordinate of each successive point on the line is calculated using 1., = x,+ 1/m. This process
continues until x reaches x; (for the |mj = | case) or y reaches ) (for the |m| = 1 case) and all points
found are scan-converted to pixel coordinates.

The DDA algonthm is faster than the direct use of the line equation since it caleulates points on the
ling without any floating-point multiplication, Howewer, a floating-point addition is still needed in
detcrmining cach successive point. Furthermore, cumulative error due to limrted precision in the
floating-point representation may caise caloulated points to dnifi away from their true position when the
line is relatively long.

Bresenham’s Line Algorithm

Bresenham's hne algonthm s a highly efficient incremental method for scan-converting lmes, It
produces mathematically accurate results using only integer addition, subtraction, and multiplication by 2,
which can be accomplished by a simple anthmetic shift operation.

The method works as follows, Assume that we wani o scan-convert the line shown in Fig, 3=3 where
0 = m = 1. We start with pixel (x], 3| ). then select subsequent pels as we work our way to the right,
one pixel position at a time in the horizontal direction towards (x), »}). Once a pixel is chosen af any
sfep, the next pixel is cither the one fo its nght (which constitutes a lower bound for the ling) or the one to
its nght and wp (which constitutes an wpper bound for the lme) due to the limit on m. The line is best
approximated by those pixels that fall the least distance from its tree path between P and F5.

Using the notation of Fig. 3-3, the coordinates of the last chosen pixel upon entering step  are (x;, ¥).
Our task is to choose the next one between the botiom pixel 5 and the top pixel T, If § iz chosen, we have
5 =x5+1 and v =¥, IF T iz chosen, we have x =5+ 1 and yy =5 + 1. The actual y
coordinate of the line atx = x;,,; 8 ¥ = mx + 8 = mix + 1) + b, The distance from 5 1o the actual ling
in the v direction is 5 = y = ¥. The distance from T to the actual line in the y direction is ¢ = (y, 4 1) = .
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Fig. 3-3 Scap-converting a line.

Mow consider the difference between these two distance values: 5 — r. When s — 1 is less than zero, we
have 5 = 1 and the closest pixel is 5. Conversely, when 5 — ¢ 15 greater than zero, we have 5 = ¢ and the
closest pixel is T. We also choose T when 5 — ¢ is equal o zero, This difference is

s=t={—yi—-1lxm+1}-y
=2y =2y, =1 = 2mix; + 1)+ 2 = 2y; = 1

Substitating #e by Ay/Av and introducing & decision varable d; = Ax(s — 1), which has the same sign as
(¥ —r} since Ax is positive in our case, we have

d, = 20y, — 28x*y, + C where C = 24y + Ax(2b — 1)

Similarty, we can write the decision vanable d,.; for the next step as

dipr = 28y x5, — WAty + O
Then

dioy = by = 2AMx ) — %) = 2Axlyy = 3)

since x5 =1 + 1, we have

dyyy =d, + 2Ay = TAx(y,, = ¥)
If the chosen pixel is the wop pixel T (meaning that o = 0) then ¥, =y, -+ 1 and so

diyy = d + Ay — Ax)
On the other hand, if the chosen pixel 15 the bottom pixel 3 (meaning that & = 0 then ¥ ; = ¥ and 5o
diyy =d; 4 1Ay

Henee we have

d,+MAy—-Axy ifd =0
d; + 2Ay ifd, <=0
Finally, we calculate o), the base case value for this recursive formulba, from the oniginal definition of the

decision varable d):

'd|+] =

dy = Ax[2mlx, + 1)+ 25— 2¢, = 1]
= Ad2(mx, + b~ y,) +2m — 1)
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Since mx) + b — v = 0, we have
d) = 2Ay = Ax

In summary, Bresenham’s algorithm for scan-converting a line from Fix. ¥)) 1o P(x;, »5) with
xy = x; and 0 < m = 1 can be stated as follows:

mt x =X, ¥ =W:

int dx = xj = x|, dv =¥, — ¥, dT = 2y — dx), S = Ldy;

int d = 2dy — dx;

setPrxelix, vi;

while (x = x3) {

Xy
if {d = 0}

d = d 4 d¥;
else {

L

d=d +dT;
)
setPixelix, vk

;

Here we first initialize decision vaniable & and set pixel /. During each iteration of the while loop, we
increment x to the next horizontal position, then use the current value of d to select the bottom or top
(increment ¥} pixel and update J, and at the end set the chosen pixel.

As for lines that have other m values we can make use of the fact that they can be mirmored either
horizontally, vertically, or diagonally imto this 0° to 45° angle mnge. For example, a line from (x}, ¥|) to
(x5, %) with —1 < m < (0 has a honzontally mirrored counterpart from i(x], —¥) to (x5, —¥) with
0 = m = 1, We can simply use the algonithm to scan-conver? this counterpart, but negate the ¥ coordinate
at the end of each ileration to seb the right pixel for the line. For a ling whose slope is in the 45° to 90°
range, we can obtain its mirrored counterpant by exchanging the x and y coordinaies of its endpomnts. We
can then scan-convert this counterpart but we must exchange x and v in the call to setPiel,

33 SCAN-CONVERTING A CIRCLE

A circle is a symmetrical figure. Any circle-penerating algorithm can take advantage of the circle's
syrmmetry o plot eight poiats for each value that the algonthm calculates. Eight-way symmetry is used by
reflecting each calculated point around each 457 axiz. For example, of pomt 1 in Fig. 3-4 were calculated
with a circle algorithm, seven more points could be found by reflection. The reflection is accomplished by
reversing the x, ¥ coordinates as in point 2, reversing the x, vy coordinaics and reflecting about the v axis as
in pevinat 3, reflecting about the v axis as in poind 4, switching the signs of x and 3 as in point 5, reversing the
x, ¥ coordinates, reflecting about the v axis and reflecting about the x axis as in point &, reversing the x, ¥
coordinates and reflecting about the v axis as in point 7, and reflecting about the x axis as in point 8.

Tor sumamarize:;

Py=1x3) Py =(-x. =1}
Py ={p x) Py ==y, —x}
Py={=pn3l  F=ly-x
Py =1{-x.3) Py =(x, =y
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Fig. 34 Eighl-way symmetry of a cingle,

Defining & Circle
There are two standard methods of mathematically defining a circle centered at the onigin. The first
method defines a circle with the second-order polynomial equation (see Fig. 3-5)
Po=p -y
where & = the r coordinate
¥ = the y coordinate
r = the cirele radius

With this method, each x coonrdinate in the sector, from 90¢ 10 45°, is found by stepping x from 0 to
2, mdmhynuuﬂmﬂt:];fnmldhynﬂluuﬂngd: Ffurmhsl:puf: This is a very inefficient
meéthod, however, because for each point both x and r must be squared and subtracted from each other; then
the square root of the result must be found.

P (n JF3)

=)

Fig. 35 Circle delined wih a second-degree polynomial equarion,
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The second method of defiming & circle makes use of mgonometnc functios (see Fig. 3-6):
r=recosl ¥ =r&mnf

where f = current angle

F = gircle mdins
1 = x coordinate
¥ = ¥ coordinate

By this method, & 15 stepped from 0 to #/4, and each valve of x and ¥ is caleulated. However,
computation of the values of sin # and cos # is even more ime-consumning than the calculations required by
the first method.

P=i{rcos @, rsin &

F &in @

@
b 04 ﬂ-’] '

Fﬁ. =6 Circle detined with I:'i;n'rmrr::tril.' functicms.

Bresenham's Circle Algorithm

If a circle is to be plotied cfficiently, the use of mgonometric and power functions must be avoided.
And, az with the generation of a straight line, it is also desirable to perform the calculations necessary to
find the scan-converted points with only integer addition, subtraction, and multiplication by powers of 2.
Bresenbam i circle algorithm allows these goals to be met.

Scan-converting a circle using Bresenham's algorithm works as follews, [ the eight-way symmetry of
a gircle is wsed to generate a circle, points will only have 1o be generated through a 457 angle. And, if points
are generated from 90° to 457, moves will be made only in the +x and =y directions {see Fig. 3-T).

The best approximation of the true cimele will be descnibed by those pixels in the master that fall the
least distance from the true circle. Examine Fig. 3-8, Notice that, if points are generated from 20° and 457,
cach new point closest to the true circle can be found by taking either of two actions: (1) move in the x
direction one unit or (2) move in the x direction one unit and move in the negative v direction one unit,
Therefore, a method of selecting between these two choices is all that is necessary to find the points closest
to the true circle.

Assume that (x,, v} are the coordinates of the last scan-converted pixel upon entering step §(zee Fig,
3-8). Let the distance from the ongin to pixel T squared minus the distance to the true cincle
squared = INT). Then let the distance from the ongin to pixel 5 squared minus the distance to the troe
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Fig. 3-7 Circle scan-converted with Bresenham's algorithm,

circie squared = IXNS). As the coordinales of T are {z; 4 1.3, and those of 5 are (x, 41,3, = 1}, the
following expressions can be deveboped:

D(T) = (5 + 1 437 =7 D(S) = (n+ 1 4y = 1f =~
This function [ provides a relafive measurement of the distance from the center of a pixel to the true
circle. Since IXT) will abways be positive (T is outside the true circle) and (5} will always be negative (5
15 inside the true curcle), a deciston variable J; may be defined as follows:

dy = DT} 4 IX8)
Therefore

d=2x + 1P+ +{y,-1F -2

ERTI ) (P

(a1, 1)

R — Y

Fig. 3-8 Choozing pixels in Bresenham's arcle algosithm,
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When o) = 0, we have [INT) = [IN3])] and pixel T is chosen, When 4, = 0, we have [IXT)| = [(5)]
and pixel  is selected. We can also write the decision vanable o, for the next step:
dipy = gy + 1 + 3 + Oy = 1 =27
Hence
dipt —dy = 2npy + 1P+ 8 + O — 1P =25+ 1F = = — 1Y
Since 3, = x; + 1, we have
dopr = iy + 4z + 204, = ¥ = 200 — w1} + 6
If T s the chosen pixel (meaning that &, < 0) then v, =y, and 80
do g =d,+4x,+6
On the other hand, if 8 is the chosen pixel (meaning that o, = 0) then ¥, =¥, = 1 and s0
dy g =, + Hx; = )+ 10
Hence we have

4 [Atante if d, < 0
T d oy — )+ 10 if d; = 0

Finally, we set ((,r) to be the starting pixel coordinates and compute the base case value &) for this
recursive formula from the original definition of d:

d =204 1+~ +(r=1Y =27 =32

We can now summanze the algonthm for generating all the pixel coordinates in the 20° io 43° octant
that are nesded when scan-comverting a circle of radios

mz=0,yv=r d=3=1r
while (x ==} |
setPixel{y, wi;
if (d < 0)
d = J+i‘-l:+ﬁ',
glsz {
d=d 4 dx =y + 1
F—
'
=+

}

Mote that duning each iteration of the while loop we first set a pixel whose position has already been
determined, starting with (0, r). We then test the current value of decision variable o in order to update d
and determine the proper v coordinate of the next pixel. Finally we increment x.

Midpoint Circle Algorithm

We present another incremental circle algorithm that is very similar to Bresenham’s approach. It is
based on the following function for testing the spatial relationship between an arbitrary point (x, v) and a
circle of radins r centered at the oniging

<1 {x, ¥} inside the circle
flr=F 43 <AL =0 (x) on the circle
= {x. v} oanside the circle
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How consider the coordinates of the point balfway between pixel T and pixel 5 in Fig. 3-8:
4+, % %}. This 15 called the midpoint and we use it 0 define a decision parameter:

gl Ly - D=+ 1P+ - -7~

If g1, is megative, the midpoint is inside the circle, and we choose pixel T. On the other hand, if p; 15 positive
{or equal to zero), the midpoimnt 15 outside the circle {or on the cirele), and we choose pixel 5. Similarly, the
decision parameter for the next step is

Pt = Wy + Iy +(¥er — %}2 —r
Simce %, =1 + 1, we have
Pior =Py =10+ 1+ 1F = 0+ 1 + Gy = 7 = = 4
Henoce

Pimi=p+tin+1)+1 +[.-|"F-rl: _J'ﬁ_{.}'.lﬂ - w)

If pixel T 15 chosen (mieaning p; < 00, we have ;. = y. On the other hand, if pixel 5 is chosen (meaning
p; = 0, we have v, = ¥ = 1. Thus

1+ ifp, =0
Pid = 1 p 420+ 14+ 1 = 20y = 1) if g, =0
We can continue to simphify this m terms of (1, v,) and get
_ |2 +3 if p, =0
P p 42 —p)+5  ifpz0

O we can write it in terms of (3,4, ¥ ) and have

i, L if p, = 0
P = Pi+ 2% — Vi) + ifp, =0

Finally, we compuie the mitial valee for the decision parameter using the ongimial definiton of p, and (0, 7):
=041 +ir=-0' -rF=3-r

Omne can see that this is oot really mteger computation. However, when r 15 an integer we can simply
set py = 1 — r. The error of being | less than the precise value does not prevent p, from getting the
appropriate sign. It does not affect the rest of the scan-conversion process either, because the decision
vanable is only updated with integer increments in subsequent steps.

The following is & description of this midpoint circle algorithm that generates the pinel coordinates in
the 90° to 43" octant:

imMr=0y=rp=1~-r
while {x == #) |{
setPixelix, v
if {p = 0
p=p+it+ 3
else {
p=p+ix=—y+5
¥
}
L
i
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Arbitrarily Centered Cireles

In the above discussion of the circle algonthms we have assumed that a circle 15 centered at the ongin.
To sean-copvert a circle centered at (x,, ¥, ), we can simply replace the setPixel(x, ) siatement in the
algotithm description with seiPixel{z + x,, ¥ + ¥.). The reason for this to work is that a circle centered af
[x., ¥.) can be viewed as a circle centered af the origin that is moved by x, and v, in the x and v direction,
respectively. We can achieve the effect of mn—mmﬂn‘tmg this arbitrarily centered circle by relocating scan-
converted pixels in the same way as moving the circle’s center from the ongin.

34 SCAN-CONVERTING AN ELLIPSE

The ellipse, like the circle, shows symmetry. In the case of an ellipse, however, symmetry is four-
rather than eight-way. There are two methods of mathematically defining a ellipse.

Polynomial Method of Defining an Ellipse
The polynomial method of defining an ellipse (Fig. 3-9) is given by the expression
PR |
LN
where [k, k) = ellipse center
d = length of major axis
b = length of minor axis

When the polynomial method is used to define an ellipse, the value of x is incremented from k to a. For
each step of x, cach value of y i5 found by evaluating the expression

f 2
{,:r .ir]

y= by k
This methed is very inefficient, however, because the squures of @ and (x = &) mast be found; then floating-
point division of {x — k)" by a® and foating-point multiplication of the square root of [1 — (x - BY fa®] by
b must be performed (see Prob. 3,207,

Routines have been found that will scan-convert general polynomial equations, including the
ellipse. However. these routines are logic infensive and thus are very slow methods for scan-converting
ellipses.

Fig. 39 Polynomial description of an ellipse.
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Trigonometric Method of Defining an Ellipse
A second method of defining an ellipse makes use of rigonometric relationships [see Fig. 3-10) The
following equations define an ellipse tHgonometrically:
x = acosil) 4+ k and vy =hsin(d) 4k

where (x, ¥) = the current coordinates
a = length of major axis
b = length of minor axis
# = current angle
A, k) = ellipse center
For generation of an ellipse using the frigonometric method, the valoe of # is varied from 0 w x/2
radians (rad). The remaining poinis are found by symmetry. While this method is also inefficient and thus
generally too slow for interactive applications, a lookup table containing the values for sin(#) and cos(f)
with & ranging from 0 to /3 rad can be wsed. This method would have been considered unacceptable a
one time because of the relatively high cost of the computer memory used to store the valuss of 8.
However, because the cost of computer memory has plummeted in recent years, this method is now quits
accepiable.

¥ o cos (A + & bslo i) + k)

Flg. 3-10 Trigonmsmeric description of an ellipze.

Ellipse Axis Rotation

Since the ellipse shows four-way symmetry, it can gasily be rotated 20°, The new equation is found by
trading a and b, the values which describe the major and minor axes. When the polynomial method is used,
the equations used to describe the ellipse becormne

=R =K _

= A !

whete (&, k) = ellipse center
a = length of major axis
b = length of minor axis
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When the tngonometric method 15 used, the equations used fo describe the ellipse become
x = beos(f) + k and ¥ = gsin(f) 4 k

where (r, V) = currenl coondinates
@ = length of major axis
b = length of minor axis
fi = current angle
[k, &) = ellipse center
Assume that vou would like to rofate the ellipse through an angle other than ®0°, It can be seen from

Fig. 3-11 that rotation of the ellipse may be accomplished by rotating the x and v axis x degrees. When this
is done, the equations describing the x, v coordinates of each scan-converted point become

r=acos() —bsin{ff +2)+ kv = bsin(f) + acos(f + 2) + &

Fig. 311 Rotstson of an ellipse,

Midpoint Ellipse Algorithm

This is an incremental method for scan-converting an ellipse that is centered at the origin in standard
position (i.e., with its major and minor axes parallel to the coordinate system axes). It works in a way that is
wery similar to the midpoint circle algorithm. However, because of the four-way symmetry property we
need to consider the entire elliptical curve in the first quadrant (see Fig. 3-12)0

Let’s first rewrite the ellipse equation and define function /7 that can be used to decide if the midpoint
between two candidate pixels is inside or outzide the ellipse:

< i) (x, ¥ inside the ellipse

fleyy=t7 +ay —a'b*{ =0 (%)) on the ellipse
= (x. v) owtside the ellipse
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{xfals{piby = |

Fig. 3-12 Scan<onverting an ellipse.

MNow divide the elliptical curve from (0, b) to {2, ) into two parts at point ) whene the slope of the
curve 18 —1, Recall that the slope of a curve defined by fix, v) = 0 @8 dyfdx = =&/ h, where f and f are
partial derivatives of f{x, ) with respect to x and y, respectively. We have fr = 20x, fir = 2a’y, and
dyfdx = =2 x/2a'y. This shows that the slope of the curve changes monotonically from one side of € to
the other. Hence we can monitor the slope value duning the scan-conversion process (o detect

Oner starting point 18 (0, b Suppaese that the coordinates of the last scan-converted pixel upon entering
step f are (x;, y;). We are to select either Tix, 4 1, »,) or S{x, + 1, y, = 1) to be the next pixel. The midpoint
of the vertical line connecting T and 5 is used to define the following decision parameter:

pr=Sln+ 1y =0 = 8+ 17 + @y - - o
If p; < 0, the midpoint is ingide the curve, and we choose pixel T. On the other hand, if p; = 0, the

midpoint is outside or on the curve, and we choose pixel 8. Similarly, we can wnite the decision parameter
for the next step:

oot =Mz + Ly, — 3= bil::I,-+] + I}j + al[_v,_,_] - !]1 — o'k
Since x,y = x;, 4+ 1, we have
Pt — By = Blxy + 17 — X )+ @l — 37 — v - 1)
Henici
Prsr = P+ 20 + 5 4 &0 =57 =y =41

If T is the chosen pixel (meaning p; < 00, we have ¥, = ¥ On the other hand, if pixel 8§ is chosen
(meaning g, = 0}, we have ¥, =y, — 1. Thus we can express p;,, in terms of p; and (x,.). ¥y k

Py = P+ 2Px if p, =D
i Pt 2'51""-|+I + b~ zl::'1-'|"'|+'| if Pz L

The initial value for this recursive expression can be obtained by evaluating the original definition of o,
with {0, E):

p=8+d -1 - =0 —ab+a 4
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We now move on to derive a similar formula for part 2 of the curve. Suppose pixel (x;, y;) has just been
scan-converted upon entering step j. The next pixel is either Ulx,. y, — 1} or Vix; + 1,3, — 1. The
midpotnt of the horizontal line connecting U and V is used to define the decision parameter

@ =l +iy - =+ +a'ly - 1 —a'¥

If g; = 0, the midpoint is inside the curve and V is chosen. On the other hand, if g, = @, it is outside or on
the curve and U is chosen. We also have

Fiag =S + 3. ¥ = D = EF{,:HL + 8 + (v, — 1Y - &*F
Sinee yio =y~ |, we have
Gy =@ = Bl + 37 = (5 + 0+ @00 = 1 =371
Hence
Gar = 4+ BPlix + 17 = 5+ D71 - 20, +

If V is the chosen pixel {meaning q; < 0), we have x.., = x;+ 1. Un the other hand if U is chosen
(meaning g, = 0), we have x| = x, Thus we can express g, in terms of g; and (x, Vi

g+ Wx, = 2y, 4+ if g; <0

U1 = | g - 20t + if g, = 0

The initial value for this recursive expression is computed using the original definition of g; and the
coordinates (x;. v, ) of the last pixel chosen for part 1 of the curve:

@ =l + 5o = D=y + 7 +a'n - 1) =o't

We can now puf together a pseudo-code description of the midpoint algorithm for scan-converting the
elliptical curve in the first quadrant. There are a couple of technical details that are worth noting, First, we
keep track of the slope of the curve by evaluating the partial derivatives fr and S af each chosen pixel
position. This means that fr = 2Mx, and /& = 24y, for position (x,, ¥,). Since we have x,,, =5, + | and
Visg =yp0ry; — | forpart 1, and x,, = 5, 005, + 1 and ., =¥, — | for pant 2, the partial derivatives can
be updated incrementally using 25 and/or —2o°. For example, if x,, =z, 4 1 and y,, , =y, = |, the
partial derivatives for position (x,,,, ¥ ) are 20%x,, = 20y, + 28 and 20y, = 2a’y, — 2a°. Second,
since 2b'x;.; and 247y, | appear in the recursive expression for the decision parameters, we can use them
to efficiently compute p.; as well as g,

imx=0y=5 /™ giarting point */
int o = a*a, bb = b*h, gal = aa*l, bbl} = bh*1;
int fr =0, fir = ag2*h, ™ imitial partial derivatives */
int p = bb = ag®h 4 1L.25%am; * compute and round off p; */
while (& < f) { /* |slope] < 1 %/
setPixel(x, v
bt
Fo= fx 4 b2,
if (= ()
P =p + i+ by,
else |
Y=
fv= = aal;
p=p+f+ b - fy
I
]
setPixellx, v); /* get pixel af (xg, p )
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p=>bbix +0.5)x+ 0.5} 4 aaly — 1My — 1) —aa*hh;,  /*setg, %
while (v = 0) {
y==
I = — aal;
if{p ==10)
p=p=~fy+am
else |
X4
p=p+fi—fi+aa

setPixelix, vk

35 SCAN-CONVERTING ARCS AND SECTORS
Ares

An arg [Fig, 3-13a)] may be generated by using either the polynomial or the trigonomestric method.
When the trigonometric method 15 used, the starting value is set equal to &, and the ending value is sct
equal to 8y [sce Figs. 3-13(a) and 3-13(h)]. The rost of the steps are similar to those used when scan-
comverting & circle, except that symmetry 15 not used.

{a) iB)
Fig. 3-13

When the polynomial method is the value of x is vared from x; © ¥, and the values of v are
found by evaluating the expressio +'r — ¥ (Fig. 3-14),

From the graphics programmer’s point of view, arcs would appear to be nothing more than portions of
circles. However, problems occur if algorithms such as Bresenham's circle algorithm are used in draowing
an are, In the case of Bresenham's algorithm, the endpoints of an are must be specified in terms of the x, y
coordinates. The general formulation becomes inefficient when endpoints must be found [see Fig. 3-15)
This occurs because the endpoints for cach 45° increment of the arc must be found. Each of the eighi
points found by reflection must be tested to see if the point 15 betwesn the specified endpoints of the arc. As
a result, a routine to draw an arc based on Bresenham's algomithm must take the time to calculate and test
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Fig. 3-14

every point on the circle’s perimeter. There is always the danger that the endpoints will be missed when a
method like this is used. If the endpoints are missed, the routine can become caught in an infinite loop.

i ]
-1l =¥ ] ] x

Fig. 3-15

Sectors

A sector is scan-converted by using any of the methods of scan-converting an are and then scan-
comverting two lines from the center of the arc to the endpoints of the arc.

For example, assume that a secior whose cenfer is al point (&, k) is 10 be scan-converied. First, scan-
convert an arc from @, to &, Next, a line would be scan-comverted from (k, &) to (roos(d,) + &,
rein(f,) + k). A second line would be scan-converted from (&, &) to (roos(85) + b, rsin(,) + k)

36 SCAN-CONVERTING A RECTANGLE

A rectangle whose sides are parallel io the coordinate axes may be construcied if the locations of two
vertices are known [see Fig. 3-18(a)]. The remaining cormer points are then derived [see Fig. 3-16(4)].
Once the vertices are known, the four seis of coordinates are sent 1o the line routine and the rectangle is
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Fig. 3-16

scan-gonveried. In the case of the rectangie shown in Figs, 3-160a) and 3-16(b), lines would be drawn as
followrs: line (x), yy) to (xy. 3 line (x), ) to (33, ) line (3, ¥} to (xp, 1 ); and line (x5, y) 1o (x;, 9 ).

17 REGLON FILLING

Region filling is the process of “coloring in™ a definite image area or region. Regions may be defined
al the pixel or geometnic level. At the prxel level, we describe 2 region erther in terms of the bounding
pixels that outline it or as the totality of pixels that comprise it {see Fig, 3-17). In the first case the region is
called boundary-defined and the collection of algorithms used for filling such a region are collectively
called boundary-fill algorithms, The other type of region is called an interior-defined region and the
accompanying algorithms are called flood-fill algorithms, At the geometric level a region is defined os
enclosed by such abstract contouring elements as connected lines and curves, For example, a polygonal
region, or & filled polygon, is defined by a closed polyline, which is a polvline {i.e., & senes of sequentially
connected lnes) that has the énd of the last line connected fo the begimmmg of the first line.

Boundary-defiond region Interiordefined reghon
A N NN NN (0] Oo0QO0
e e *e e Q000000
L L C0O00CQO0O0QO0

L N ] L N N DOO0QO00
[ B N N ] OO0 QCO0QOQOOO0
L] » o Q0 20000
LN N R N N o0 OO0 00

i) i)
Fig. 3-17

4=Connected vs §-Conniecied

An interesting point here is that, while a geometrically defined contour clearly separates the interior
of a region from the exterior, ambiguity may anse when an outline consists of discrete pixels in the
image space. There are two ways in which pixels are considered connected to each other to form a
*comtinuous” boundary, One method 13 calked 4-connected, where a pixel may have up to four neighbors
[see Fig. 3-18(a)]; the other is called S-connected, where a pixel may have up o eight neighbors [see
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Fig. 318 4-connected vs, S-comnected panels,

Fig. 3-18(b)]. Using the 4-connected approach, the pixels in Fig. 3-1B(c) do not define a region since
several pixels such as A and B are oot connécted. However usimg the B-connected definition we identify a
tnangular region.

We can further apply the concept of connected pixels to decide if a region is connected 10 another
regiion. For exarnple, uging the B-connected approach, we do not have an enclosed region in Fig. 3-18{c)
gince “interior” pixel C is connected 1o “exterior™ pixel D. On the other hand, if we use the 4-connected
definition we have a riangalar region since to wlernor pixel iz conpecied o the outside.

Mote that it 15 not a mere comncidence that the figure in Fig. 3-18{c) 15 a boundary-defined region when
we use the E-connected definition for the boundary pixels and the 4-connected definition for the mienor
pinels. In fact, uzing the same definition for both boundary and interior pixels would simply result in
confradiction. For example, if we use the B-connected approach we would have pixel A connected 1o pixel
B (continuous boundary) and st the same time pixel C connected to pixel D (discontinuous boundary). On
the other hand, if we use the 4-connectd definition we would have pixel A disconnected from pixel B
{discontinuous boundary) and at the same time pixel C disconnected from pixel D {continuous boundary).

A Boundary-fill Algorithm

This is a recursive algorithm that begins with a starting pixel, called a sead, ingide the region. The
alporithim checks to see if thiz pixel is a boundary pixel or has already been Alled. IF the answer is no, it fills
the pixel and makes a recursive call to iself using each and every neighbormg pixel as a new seed. I the
answer is yes, the algonthm simply retums 1o its caller.

This algorithm works elegantly on an arbitranty shaped region by chasing and filling all non-boundary
pixels that are connected to the seed, either directly or indirectly through a chaim of neighboring relationg.
However, a straightforward implemeniation can take time and memory o execute due o the poentially
high number of recursive callz, especially when the size of the region is relatively large.

Varnations can be made to limit the number of recursive calls by structunng the order in which
neighboring pixels are processed. For example, we can first fill pixels to the left and right of the seed on the
same scan ling until boundary pixels are hit (something that can be done using a loop control structure). We
then inspect each pixel above and below the line just deawn (which can also be donie with a loop) 1o see if it
can be used as a new seed for the next horizoatal line to fill. This way the number of recursive calls at any
particular time is merely & when the current ling is & scan lines away from the initial seed.

A Flood-Gill Algorithm

This algorthm also begins with a seed (starting prxel) inside the region. It checks io see if the pixel has
the regron'’s original color. If the answer 15 yes, it fills the pixel with a new cobor and uses each of the pixel’s
nelghbors as a new seed In 4 recursive call. IF the answer is no, it retorms to the caller.

This method shares great similanties in its operating principle with the boundary-fill algonithm. It is
particularly usefil when the region to be filled has no uniformly colored boundary. On the other hand, a
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region that has a well-defined boundary but s itsell’ multiply colored would be better handled by the
bomdary=fill methosd,

The execution efficiency of this flood-fll algorthm can be mmproved in basically the same way as
discussed above regarding the boundary-fill algorithm.

A Scan-line Algorithnn

In contrast to the boundary-fill and Aood-fill algorithms that fill regions defined at the pixel level in the
image space, this algorithm handles polvgonal regions that are geometrically defined by the coordinates of
their wertices (along with the edges that connect the vertices). Although such regions can be filled by first
scan-converting the edges to get the boundary pixels and then applying a boundary-fill algonthm to finish
the job, the following is a much more efficient approach that makes use of the information regarding edges
that are available during scan conversion to facilitate the filling of intenor pixels.

We represent a polygonal region in terms of a seguence of vertices ¥y, Fy, V5, .. ., that are connected
by edges E;, By, Ey. ..., (see Fig. 3-19). We assume that each vertex I, has already been scan-converied to
integer coordinates (x;, ¥,).

| 1] [CT—

Firs® scom e

Fig. 3-19 Scan-comverting 2 pofygonal regron,

The algorithm begins with the first scan line the polygon occopies and proceeds line by ling towands
the last scan line, For each scon line i finds all intersection points between the current scan line and the
edges. For example, scan line v intersects edges E,, E;, E;, and E; al points a, b, ¢, and b, respectively. The
intersection points are sorted acconding to their x coordinates and grouped into pairs such as (o, &) and
{c, d) A line 15 drawn from the first point to the second point in cach pam.

Horizontal edges are 1gnored since the pixels that belong to them are sutomatically filled during scan
conversion. For example, edge E; is drawn when the comesponding scan line is processed. The two
intersection points between the scan hine and edges E; and £; are conmected by a line that equals
exactly Ey.

Mow we take @ more careful look at cases when & scan ling intersects a vertex, I the vertex is a local
minimum of maximuam such as ¥y and ¥, no special trestment is necessary. The tao edges that join at the
vertex will zach yield an mtersection point with the scan line, These two infersection points can be treated
just like any other intersection points to produce pairs of points for the filling operation. As for vertices Fy
and ¥, they are simply local minimums, sach with one joining edge that produces a single intersection
potnt. Om the other hand, it a scan line intersects a vertex (c.g., Fy) that is joined by two monotomically
increasing or decreasing edges, getting two intersection points at that veriex location would lead 1o
incorrect resulis (e.g., & total of three intersection points on the scan line that intersects Fy ). The solution o
thiz problem is to record only one intersection point ai the vertex.

In arder to support an efficient implementation of this scan line algorithm we create a data siruciure
called an cdge list {see Table 3-1). Each non-horizontal edge occupics one row /record. Information stored
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Table 3-1 An edge hst

x coprdinate of

Edge Fnin - vertex with v = ¥ lim
.E| ¥ ¥y = | K I.Ilm|
£ F L X| 1 fm
£y ¥y Ya=1 Xg 1 fmy
.Eﬂ Vs ¥ Xy I,I'H:I,,
£y B ¥ Xy 1wy

| E:I !I ¥a ¥ Lr] Il'lm:l-

in each row includes the v coordinate of the edge'’s two endpoints, with v, being the smaller value and
mas the larger value (may be decreased by 1 for reasons to be discussed below), the x coordinate of the
endpoint whose v coordimate is v,;,. and the inverse of the edge’s slope m. The rows are sorted according to
Fonin- Going hack to our example in Fig. 3-19, since edges £, and E; both originate from the lowest vertex
Fi at (xy, ¥;). they appear on wop of the edge list, with m; and s, being thewr slope value, respectively.

Edges in the adge hist become active when the y coordinate of the cument scan line matches their v,
wvalue. Only actrve edges are involved in the calculation of mtersection points. The first infersection point
between an active edge and a scan line is always the lower endpoint of the edge, whose coordinates are
already stored in the edge® record. For example, when the algorithm begins at the first scan line, edges E,
and E; become active, They intersect the scan line at (x, v,).

Additional infersection points between an edge and successive scan lines can be calculated
incremenially, If the edpge intersects the current scan line af {x, v), it infersects the next scan line af
(x =+ 1/m, y + 1). For example, edpe £- intersects scan line v at point &, and 5o the next intersection point
on scan line ¥ 4+ 1 can be caleulated by Ax = 1 /m, since Ay = 1. This new x value can simply be kept in
the x field of the edge's record.

An edge is deactivaled or may even be removed from the edge list once the scan line whose ¥
coordinate matches its v, value has been processed, since all subsequent scan lines sty clear from it The
need that was mentioned early to give special treatment to a vertex where two monotonically increasing or
decreasing edges meet is elegantly addressed by subtracting one from the y,. value of the lower edge.
This means that the lower edge 18 deactivated one ling before the scan line that intersects the vertex. Thus
only the upper edge produces an intersection point with that scan line (see ¥ in Fig. 3-19). This explains
why the initial ¥, valee for edges E, and E, has been decreased by one.

38 SCAN-CONVERTING A CHARACTER

Characters such as letiers and digits are the building blocks of an image’s texiual contents. They can be
presented in & variety of styles and sizes. The overall design sivie of a set of characters is referred (o as its
typelace or font. Commonly used fonts include Arial, Century Schoolbook, Courier, and Times New
Roman. In addition, fonts can wvary in appearance: bold, italic, and bold and iralic. Character size is
typically measured in height in inches, poinis (approximately & inch), and picas (12 paoints).

Bitmap Font

There are two basic appreaches to character representation. The first is called a mster or bitmap font,
where each character is represented by the on pixels in a bilevel pixel grid patiemn called a biimap (s2e Fig.
3=20). Thiz approach is simple and effective since characters are defined in already-scan-converted form.
Puiting a character into an image basically emtails a direct mapping or copying of its bitmap to a specific
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Fig. 3-20 Bitmap font

location in the image space. On the other hand, a separate font consisting of scores of bitmaps for a set of
characiers is often needed for each combination of style, appearance, and size.

Although one might generate varations n appearance and size from one font, the overall results tends
to be less than satisfactory. The example in Fig. 3-21 shows that we may overlay the bitmap in Fig 3-20
onto itself with a horizontal offset of one pixel to produce (a) bold, and shift rows of pixels in Fig. 3-20 w

produce (b) italic.
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Fig. 3-1 (enemting variations in appearance,

Furthermore, the size of a bitmap font is dependent on image resolution. For example, a font using
bitmaps that are 12 pixels high produces 12-point characters in an image with 72 pixels per inch. However,
the same font will result in 9-point characters in an image with %6 pixels per inch, since 12 pixels now
measure 0,125 inch, which is about 9 points, To get 12-point characters in the second image we would need
a font with bitmaps that are 16 pixels high.

Outling Font

The second character representation method is called a vector or cutling font, where graphical
primitives such as lines and arcs are used to define the outline of each character (see Fig. 3-22). Although
an outline definition tends o be less compact than a bitmap definition and requires relatively time-
CONSUMING SCan-conversion operations, it can be used to produce characters of varying size, appearance,
and even onentation. For example, the outlme definition in Fig. 3-22 can be resized through a scaling
transformation, made into italic through a sheanng transformation, and turned around with respect to a
reference point through a rotation transformation (see Chap. 4).

These transformed primitives can be scan-converted directly into characters in the form of filled
regions in the target image area. Or they can be used to create the equivalent bitmaps that are then used to
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Fig. 3-11 Cntline fond.

produce characters. This alternative 15 particularly effective m limitng scan-comversion time when the
characters have repetitive occurmences in the image.

3.9 ANTI-ALIASING

Scan conversion iz essentially a systematic approach to mapping objects that are defined in contimoous
space o thewr discrefe approximation. The vanous forms of distortion that result from this operation are
collectively refermed to as the aliasing effects of scan conversion.

Staircase

A common example of aliasing effects is the staircase or jagged appearance we ses when scan-
converting a primitive such as a line or a circle. We also sec the stair steps or “jaggies™ along the border of
a filled region.

Unequal Brightness

Another artifact that 15 less noticeable is the onequal brightness of lines of different onentation. A
slanted line appears dimmer than a horizontal or vertical lme, although all are presented at the same
intensity level. The reason for this problem can be explained using Fig. 3-23, where the pixels on the
horizontal line are placed one unit apart, whereas those on the diagonal line are approximately 1.414 units
apart. This difference in density produces the perceived difference in brightness.
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Fig. 3-23
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The Picket Fence Problem

The picket fence problem occurs when an object i not aligned with, or does not fit into, the pixel gnd
property. Figure 3-24(q) shows a picket fence where the distance berween two adjacent pickets is nol a
maltrple of the unit distance between pixels. Scan-converting it nosmally into the image space will result in
uneven distances between pickets since the endpoints of the pickets will have to be snapped o pixel
coordinates [see Fig 3-24(8)). This is sometimes called global aliasing, as the overall length of the picket
fence is approximately correct. On the other hand, an attempt to maintain equal spacing wiil greathy distort
the overall length of the fence [zee Fig. 3-24{c)]. This is sometimes called local aliasing, as the distances
between pickeis are kepi close to their true distances,

L L ] L ] L ] L L L - - - - L - - L] L L - -

i i%) ]
Fig. 3-34 The picket fence problem.

Another example of such a problem arises with the outline font. Suppose we want to scan-convert the
uppercase character “E” in Fig. 3-25(a) from its outline description to a bitmap consisting of pixels inside
the region defined by the sutline. The result in Fig. 3-25(b) exhibits both asymmetry (the upper arm of the
character is twice as thick as the other parts) and dropout (the middle arm is absent). A slight adjustment
andor realignment of the omtline can lead to 8 reasonable outcome [see Fig, 3-25(c)].

" ¥ ¥ ® B W
E] [ - " B W ® & & &
L] L] " N & & L]
L] L] L] & & &
L] L] L] L
L] L] " & & @ & & & i
1] L]

1a) i {1

Fig. 3-25 Scan-comventing an ouiline fost.

Anti-aliasing

Most aliasing artifacts, when appear in a static image at a moderate resolution, are often tolerable, and
in many cases, neglipible. However, they can have a significant impact on our viewing expericnce when
left untreated in a series of images that animate moving objects. For example, a line being rotated around
one of its endpoints becomes a rotating escalator with length-altering steps. A moving olbject with small
parts or surface details may have some of those features intermittently change shape or even disappear.
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Although increasing image resolution i3 a straighiforward way to decrease the size of many aliasing
artifacts and alleviate their negative impact, we pay a heavy price in terms of system resource (going from
W x H to 2W x 2H means quadrupling the number of pixels) and the results are not always satisfactory.
On the other hand, there are techniques that can greatly reduce alissing artifacts and improve the
appearance of images without increasing their resolution. These techniques are collectively referred 1o as
anti-aliasing technigues.

Some anti-aliasing techniques are designed to treat a particular type of artifact. For instance, an outline
font can be associated with a set of rules or hints 1o guide the adjusiment and realignment that is necessary
fior its conversion inio bitmaps of relatively low resolution, An example of such approach is called the
TrueType font.

Pre-filtering and Post-filtering

Pre-filtering and post-filtering are two types of gencral-purpose anti-aliasing technigues, The concept
of flienng originates from the field of signal processing, where true intensity values are confimmpous signals
that consists of elements of varous frequencies. Constanl intensity values that correspond o a uniform
region are at the low end of the frequency mange. Intensity values that change abruptly and correspond 1o a
sharp edge are at the high end of the spectrum. In order to lessen the jagged appearance of lines and other
contours in the image space, we s¢ek w smooth oul sudden intensity changes, or in signal-processing
terms, to filter out the high frequency components, A pre-filtering technigque works on the true signal in the
continuwous space to derive proper values for individual pixels (filtering before sampling), whereas a post-
filtering technique takes discrete samples of the continuous signal and uses the samples to compute pixel
values (zampling before filiering).

Area Sampling

Area sampling is a pre-filtering technigue in which we superimpose a pixel grid pattern onto the
continuous object definition. For cach pixel area that intersects the object, we calculate the percentage of
overlap by the object. This percentage determines the proportion of the overall intensity value of the
corresponding pixel that is due 1o the object™s contribution, In other words, the higher the percentage of
overlap, the greater influence the object has on the pixel’s overall inlensity value,

In Fig. 3-26{a) a mathematical line shown in dotted form is represented by a rectangular region that is
one pixel wide, The percentage of overlap between the rectangle and each intersecting pixel is calculated
analytically, Assuming that the background is black and the line is white, the percentage values can be used
directly 10 set the imensity of the pixels [see Fig. 3-26(b)]. On the other hand, had the background been
gray (0.5, 0.5, 0.5) and the line green (0, 1, 0), each blank pixel in the grid would have had the background
gray value and each pixel filled with a fractional number f would have been assigned a value of
[0.5(1 =), 0.5(1 — f) +f, 0.5(1 = {)}—a proportional blending of the background and object colors.

Although the resultant discrete approximation of the line in Fig. 3-26(b) takes on a blurry appearance,
it no longer exhibits the sudden transition from an on pixel to an off pixel and vice versa, which is what we

, mIm
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Fig. 3-26 Area samphing.
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would get with an ordinary scan-conversion method [see Fig. 3-26(c)). This tradeoff is characteristic of an
anti=alizsing technique based on filtering,

Super Sampling

In this approach we subdivide each pixel into subpixels and check the position of each subpixel in
relation to the object to be scan-converted. The object’s contribution to a pixel’s overall intensity valoe is
proportional to the number of subpixels that are inside the area occupied by the object. Figure 3-27(a)
shows an example where we have a white object that is bounded by two slanted lines on a black
background. We subdivide each pixel into nine (3 x 3) subpixels. The scene is mapped to the pixel values
in Fig. 3-27(b). The pixel at the upper right comer, for instance, is assigned  since seven of its nine
subgpixels are inside the ohject area. Had the object been red (1, 0,0) and the background lighi vellow
(0.5,0.5,0), the pixel would have been assigned (1 x  + 0.5 x &, 0.5 x &, 0), which is (.}, 0).

0 b "
(4] i B
1 e 179

] (B

Fig. 3-17 Super sampling.

Super sampling is often regarded as a post-filtering technique since discrete samples are first taken and
then used to calculate pixel values. On the other hand, it can be viewed as an approximation fo the area
sampling method since we are simply using a finite number of values in each pixel area to approximate the
accurate analytical result.

Lowpass Filtering

Thiz is a post-filtering technique in which we reassign each pixel a new value that is a weighted
average of its original value and the original values of iis neighbors. A lowpass filier in the form of a
(Zr 4+ 1) % (2Zn + 1) prid, where r = [, holds the weights for the computation. All weight values in a filter
should sum to one. An example of a 3 = 3 filter is given in Fig. 3-28(a).

To compute a new value for a pixel, we align the filter with the pixel grid and center it ot the pixel. The
weighted average 15 simply the sum of products of each weight in the filter imes the corresponding pixel’s
original value. The filter shown in Fig. 3-28(a) means that half of each pixel’s original value is retained in
its new value, while each of the pixels four immediate neighbors contributes one eighth of its original
value to the pixel’s new value, The result of applying this filter to the pixel values in Fig. 3-26(c) is shown
in Fig. 3-28(h),

A lowpass filter with equal weights, sometimes referred to a5 a box filter, is said to be doing
neighborhood averaging, On the other hand, a filter with ils weight values conforming 0 & two-
dimensional Gaussian distribation is called a Gaussian filter.



CHAF 1] SCAN COMVERSION 51

olofofofofuslo
0 1% 0 ololamiaizie
UEL2{IE o [1mfiafsa g o
0 juslo VE[SE[SE| L4 18 0 | 0

BEDRD0C

[l (5}
Fig. 3-28 Lowpass filiering.

Pixel Phasing

Pixel phasing is a hardware-based anti-aliasing technique. The graphics system in this case is capahle
of shifting individual pixels from their normal positions in the pixel grid by a fraction (typically § and {) of
the unit distance between pixels. By moving pixels closer to the true line or other contour, this technique is
mManhmmeﬁmgﬂmshmmnfﬂmnﬂm

110 EXAMPLE: RECURSIVELY DEFINED DRAWINGS

In this section we use two common graphical primitives to produce some interesting drawings. Each of
these drawings is defined by applying a modification rule to a line or a filled triangle, breaking it into
smaller pieces so the rule can be used to recursively modify each picce in the same manner. As the picoes
become smaller and smaller, an intriguing picture emerges,

C Curve

A line by itself is a first-order C curve, denoted by C, (see Fig. 3-29). The modification rule for
constructing successive generations of the C curve is to replace a line by two shorter, equal-length lines
joining each other at a 907 angle, with the original line and the two new lines forming a right-angled
triangle. See Fig. 3-29 for C,, s, Cy, Cy, and Cy.

€, C, , c, c, (i

Fig. 3-19 Successive generations of the C curve,

Presume that the following call to the graphics library causes a line to be drawn from (x,. ¥, ) to (x;, ¥y)
using the system's current color:

line(x,, ¥;. %5, ¥}
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We can descnibe a psewdo-code procedure that generates C;

C-curve {foat x, . len, alpha; int #)
{
if (o= 0 §
len = len/sqrud.0);
C-gurvelx, v, len, alpha + 45, 8 = 1);
x = x4 len®*cos{alpha + 45);
v = y 4 len*sin{alpha + 45);
C-curvelx, v, len, alpha — 45, 5 — 1]
} else
limedx, ¥, x + len*cos{alphal, v + len*sinfalpha)),
¥

where x and v are the coordinates of the starting point of a line, len the lenagth of the line, alpha the angle
(in degrees) between the line and the x axis, and » the number of recursive applications of the modification
mule that is necessary to produce C,. If m =10, no modification is done end the line itself is drawn.
Dtherwise, two properly shortened lines, with one rofated counter-clockwize by 457 and the other
clockwise by 437 from the current line pomition, are generated (representing one application of the
modification rule), each of which iz the basis of the remaining & — | steps of recursive construction,

The Koch Curve

Az m the case of the T curve, a line by itself is a first-order Koch curve, denoted by K (se2 Fig. 3-30).
The modification rule for constructing successive penerations of the Koch curve 15 to divide a fine into
three equal segments and replace the middle segment with two lines of the same length (the replaced
segment and the two added lines form an oguilateral trangle). See Fig. 3-30 for K|, K;, and K.

K, K, K, K,

2L

Fig. 3-30 Successive generations of the Koch curve,

The Sierpinski Gaskei

This time our graphical primitive is a filled tangle, denoted by 5, (see Fig. 3-31). The modification
rule for constructing successive generutions of the Sierpinski gasket is to take out the area defined by the
lines connecting the midpoint of the edges of a filled iriangle, resulting in three smaller ones that are
similar to the onginal. See Fig. 3-31 for 5, 5, and ;.
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Fig. 3-31 Suwccessive generations of the Sierpmski gasket,

Solved Problems

3 The endpoints of a grven ling are (0, 0) and (6, 18), Compute each value of y a5 x steps from 0 1o 6 and plot the

resulis,
SOLUTION

An equation for the line was not given. Therefore, the eguation of the line must be foand. The equation of
the line {y = wix + b) & found ss follows. First the sbope is found:

Ay - ig-0 18
m:izy_: JII——E

= =—=13
A 3y =X 6 =10 fa

Mext, the y intercept b is found by pluggng ¥, and 1 inte the equation ¥ = 3x -+ b 0 = 3(0) <+ b Therefore,
b =0, so the equation for the line is y = 3x (see Fip. 3-32)

3z What steps are required o plot a line whose slope is between F and 45° using the slope-intercept
equation?

SOLUTION

Compute dy: dy = 5y — ;.

Compute dy: dy = y; — ¥y,

Compute m: m = dy/dx.

Compute b b=y = m x x;.

Set (x, y) equal to the bower left-hand endpoint and set x,_, equal to the largest value of x. If dx < 0, then
=g vy=p =5 Wde =0, thenx=x,, =y, and x; = x5
Test o determine whether the entire line has been drown, If x = x_,, stop.
Plot a point at the current (x, ¥) coordinates,

Increment = r=x 4 1.

Compute the next value of v from the equation v = mr + b,

Go 1o step 6.

el NE

e P = R

33} Use pseudo-code 1o describe the steps that are required to plot a line whose slope is between 45°
and =45 (i.e, [m| = 1) using the slope-intercept equation.
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Fig. 3-32
SOLUTION

Presume v, <y for the teo endpoints oy, » b and (s, v )

ink £ = 1, ¥ = F
float xp, m = (¥ — 3 )fl5; — ), b = ) — oy
st Pixelix, ¥k
while (¥ < 330 |
=
xp = (v — &)
x = Floor{x, + 0.3}
setPielix, v
'

34 Usze pseudo-code to deseribe the DDA algorithm for scan-converting a line whose slope is between
=45 and 45° {ie., |m| = 1)
SOLUTION
Presume x; < x; for the two endpoints (), ¥ ) and {x;, Wk
il = I
flcnt ¥y =¥y, Mo g = w Wiz —x K
whike (x <= 13} {
¥ = Flowor{ yy = 0.5);
setPixelix, ¥k
e
¥y =Fp o
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Usze pseudo-code 1o describe the DDA algorithm for scan-converting a line whose slope is hetween
45° and —43° (ie, lm| = 1).

SOLUTION
Presume v, < w; for the two emdpoinis (x,, v § and {x, wk

mt X, ¥ =y,;
Boat xp = ¥, Mgy = (Fp = 50 = nk
while (¥ <= w) [

x = Floon{x, + 0.5}

setPixelz, v

What steps are required to plot a line whose slope s between F and 45° using Bresenham’s
method?

SOLUTION

l. Compute the initial values:

e = iy — X, Ticy = Hay — idx)
dy =y = ¥ o = fnc, — dx
fne, = Jddy

2. Bet x, v) equal o the lewer left-hand endpoint and v, equal 10 the largest valae of x. If dy < 0, then
X= 3, V=V, By =y I de = 0, them x = 5, ¥ = ¥, X = 5.

3. Pot a point at the carment {x. ) coondinabes.

4. Test o see whether the entire line has been drawn, [T x = x_y, slop,

L Eﬂl‘rlfﬂ.l[tl]'l!hﬂl:iun of the mext [ri:=1. Ifaf =0, Il1:'nnl'=d'-|-||'rlr.-|. l!'d'zﬂ,l]wnd’:d-l—ﬁrrz, and
then v = v+ 1.

G Incremem rx=x+ |

7. Plot & peint ot the current (1, ¥) coordinates.

8 Go to step 4.

Indicate which raster locations would be chosen by Bresenham’s algorithm when scan-converting a
line from pixel coordinate (1, 1} to pixel coordinate (8, 5).

SOLUTION
First, the starting values must be found. ln this case
=3 -5 =8~1=7 di=w—p=5-1=4
Therefare:

Moy =2p=2=x4=8
Mgy =Ny —dy) =2 % (4= T)= =&
de=fn —di=§-T=1

The following table indicates the values compuied by the algorithm (see also Fig. 3-33).
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Fig. 3-33

In the derivation of Bresenham's line algorithm we have used s and ¢ 0 measure the closeness of
pizels 5 and T to the true line, However, 5 and ¢ are only distances in the y direction. They are not
really distances between a point fo a line as defined in geometry. Can we be sure that, when s = 4,
the two pixels 5 and T are truly equally far away from the true line (hence we can choose either one
to approximate the ling)?

SOLUTION

As we can see in Fig. 3-34, when 5 = t the true ling miersects the verhical line connecting 5 and T at

It x =¥, ¥ = ¥;

midpoint. The troe distance from S to the line is &5 and that from T to tee line is JT. Since the bwo right-
angled tnangies are jotally equal (they have equal angles and one pair of equal edges £ and 1), we pet 45 = 4T,

’//Tm-tﬂnt

Fig. 3-34

Modify the description of Bresenham's line algorithm in the fext to set all pixels from inside the
loop struchure,

SOLUTION 1

int dr = ¥ — ¥, dy =, — ¥, dT = Hdy - dv), d5 = 2d;

it of = 2dy — ol
while (x == x5} {
sePinelix, vig

P
il {d =0l
i =d + d%,



CHAPR 3] SCAN OONVERSION 57

else |
»
of = o +dT:
F
i
SOLUTION 2
intx=x —1, y=p;:
int dy = 15 =z}, dv = gy — 3, T = 2y — ), a5 = 2y,
int d = —d,
while (x < xi) |
I+
if {d =
d =d -+ d5;
cise |
e
i =d +dT;

}
setPixelx, vl

}

110 ‘What steps are requined to generate a circle using the polynomial method?
SOLUTION
1. Set the initial varables: 7 = circle radias; (i, k) = coordinates of the circle center; x = { § = step sz
Kol = F'.I"'-."E
2. Test to determing whether the entire circle has been scan-converied, If © = 1, sbop.
3. Compute the value of the v coordinate, where y = o/ = 5,
4. Plot the sight points, found by symmetry with respeet w the cemter (4. &), at the current (x, v) coordinabes:

Plotx 4+ k. v + k) Plot| —x 4+ &, —=v + &k}
Plodl ¥ + b, x + k) Plot{ =y + &, =x 4+ k}
Mol —y + b+ k) Plow 3+ &, —x + &)
Photl—x = &, v + &) Platix =+ h, =y + k]

5 Incremeni v x=x+1{.
& Go bo step 2,

311 What steps are required fo scan-convert a circle using the frigonemeiric mathod?
SOLUTHON

1. St the imtal vanables: r = ciele mdis; (b k) = coordinates of the circle center; § = step size;
g = 7/ mdians = 457, # =0,

2. Test to determine whether the entire circle has been scan-comverted. [f # = O, stop.

3. Compute the value of the © and » coordinates:

x = roos{dy y= rainl(i)
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4. Plot the sight points, found by symmetry with respect io the center (h, &), &t the cusrent {x, ¥) coondinates:

Flatlx < k, ¥ + k) Plot{ =x + k, =y + k)
Plow{ y + b x + k) Ploy—y + &, —x + &}
Plot{ =y 4 &, x + k) Ploo| y 4 b, =x <+ k)
Ploai—x + b, v+ &) Flat{z + b, =y + Kl

% Increment 6 8§ = 44,
6. Goto step 2.

What steps are required to scan-convert a circle using Bresenham's algorthm?
SOLUTION

1. Setthe initial values of the wirinbles: (b, k) = coordinates of cirele center; © = ) ¥ = cirele mdius »; dned
d=3-1r

2. Test to determine whether the entire circle has been scan-converted. If x = ¥, stop.

1. Plot the eight points, found by symenetry with respect io the center (h, &), & the cusrent {z, ¥) coordinates:

Plotx + h, y 4+ k) Plot{—x 4+ &, =y 4+ &}
Plat y + k. x + k) Plat{—y + &k, —x + k)
Plot —y + k. x + k) Plot{ v + b, —x + &)
Mot —x + b, ¥ + &) Platiz + h, —y + ki

4, Compuate the location of the newt pinel. If @ < @, then d =d + 4+ b and x =x+ 1. If & = 0, then
d=d+Hx=vi+llx=x+ |, amd p=yp~ L

5. Go o step 2.

When eight-way symmetry is used to obtain a full circle from pixel coordinates generated for the 0°
0 43 or the 90° to 45° ocfant, cerain pixels are set or plotted twice. This phenomenon is
sometimes referrad 1o as oversirike. Identify where overstrike ocours.

SOLUTHOM

At bocations resulied from the initial coordinates (r, 03 or (0, F) sinee {0, 7)) = (=0, #), (0, =) = {0, —#),
ir, 0y = {r, =0}, and (—r, 0} = {—r, —0).

In sddiiion, f the lasi generaped pixel is on the disgonal line ar (or, o) where o approxifoabes
]ln".,.l'l:'l.{l:l = (LT, then overstrike also ocours at (ar, @F), | —=r, u.r]n, {ar, —n::.r}.. and (—ar, —zr].

Is overstrike harmful besides wasting time?
SOLUTION

It is often harmless since resefting o pixel with the same value does not really change the mmage m the
frame buffer. Howewver, if pixel values are sent out directly, for example, o control the exposure of a
photographic mediem, siech 2= & slide or a negative, then cverstrike amounts 60 double sxposure at kcations
where it cccurred.

Furthermose, if we sed pixels using their complementary colors, then oversirike would lemve them
unchanged, since complementing a color teice simply wields the color itself

When scan-converting a curve using the polynomial method (zee Probs, 3,10, 3,20, and 3.25) or the
trigonemetric method {see Probs, 3,11, 3.21, and 3.24), a step size { is used 1o compuie successive
points on the true curve. These pomis are then mapped (o the image space. What happens if # is too
large”? What happens if it is too small?
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SOLUTION
If i is wo large, the computed points will be relsively far from each odber and the correaponding pixels

will it form a conbinees curve,

If i 15 too small, compuied points will be 5o close o each other that two or more adjacent ones will be
mexpied #o the same pixel, resulting in overstrilke.

Motz that it is not alwsys possible 1o find a single step size for a specific scan-comversion 1ask that yields a
conlimesus curve without eversinike, In such cases we may take an adaptive approsch in which adjustments
are made 1o siep siee duning scan-conversion based on points that have already been mapped 1o ihe image

space. For enample, if two comsscutively computed points have been mapped to two pixels that are not
connected to ecach other, then an additional point betereen the a0 points may be computed using half the step
Bize.

Will the following description of Bresenham's circle algorithm and the one in the text produce the
garme fesulia?
mx=0y=rd=3-2r
setPinel(x, y);
while (x < ¥} |
if {a = 0
d =d + 45 + 6
else |
d = o + dx — )+ LE
Wem=g
F
gy
setPixnelx, ¥
!

SOLUTION

Let A be the cormect set of pixels chosen by Bresenham’s circle algorithm. Both wersions produce A when
the rightmost pinel in A is on the disgonal line x = . However, when the coordinates of the rightmost pixel in
A satisfies ¥ = y — |, only the version in the text stops properly. This version will produce one additional pixel
beyond the 90° 1o 43" octant. This exira pizel mirrors the dghtmast pixel in A with respect 10 the diagonal
lisie,

In the dervation of Bresenham's circle algonthm we have used a decision vanable 4, =
DT) 4+ IN5) to help choose between pixels 5 and T, However, function [ as defined in the fext
is not a true measure of the distance from the center of a pixel to the true circle. Show that when
dy = 0 the two pixels § and T are not really equally far away from the tree circle,

SOLUTION

Let 45 be the actus] dstance from 5 fo the troe crele and T be the actanl distsnce from T to the tme

cirche (see Fig. 3-35). Also substitune x for x, + 1 and v fior y, in the formula for d; ta make the following proof
easier by read:

d=2 s b (y=1f=2F =0
Since (F+dTF = + 3 and (r — d9F = + (¥ — 1} we have
2T +dT =¥+ —F and = 2dS+d5 =8 #(y— 1 =~
Hence

2d T+ dT = 2rdS + 5" = 0
dTi2r + 4T) = d5(2r — d5)

Simoe dT/d5 = (Ir = d8)(2r + dTh = 1, we have T = d5. This means thet, when 4, =0, pixel T s
acnally closer o the true cincle than pixel 8,
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Fig. 3-35

318 Write a description of the midpoint circle algorithm in which decision parameter p is updated using
X and ., instead of 1 and .

SOLUTION
int x ='|:I.._}'=r,;:l =1-r
while (x <= ¥} |
selPixelx, v
bk
if (= )
pEp+dxel;
else |
V==

peEpddix =+ L

319 Wil the following description of the midpoint circle algorithrn and the one in Prob, 318 produce
the sume results?

mrx=0y=rp=1-r
seiPinellx, ¥
while (& < 1) {
H
if{p =
p=Ep+drd;
eles |

¥==
pEp+x-y+1;

setPixelix, ¥}
1

SOLUTION

Similar 1o the sobation for Prob. 3.06. Only the version in Prob. 318 produces the cormect set of pixels
under all circumstances.
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What steps ane required 10 generate an ellipse using the polynomial method?

SOLUTION

I. Set the initial varisbles: ¢ = length of major axis; b = length of minor axis; (4, k) = coondinates of
ellipse cender, x = 0%, § = step size; 1, = @
Test to determine whether the entire ellipse has been scan-converted. If x = x4, stop.
Compute the value of the v coardinate;

—

b
|
_'I-=E1-|i'|—;

4, Pl the four points, found by symametry, st the carrent (x, 30 coordinates:

Plotix + k. y 4 k) Pliot] —x <+ &, =y 4 k]
Pl —x + b, v + k) Platix + h, —v+ k)

Increment x2 x = x 4 i.
Gir 1o gtep 2.

What steps are required to scan-convert an ellipse using the trigonometric method?

SOLUTION

1. 5etf the migal vanables: o = length of major axis;, & = length of minor &xis, (&, &) = coondinaies of
ellipse center, § = counter step size; 04 = o/2; & = 0,

2. Test 1o determing whether the entire ellipse has been scan-converted. IF 0 = . stop,

3. Compuie the values of the x and v coondinates:

¥ = cosl ] ¥ = b smiify
4. Pl ihe four points, found by symmetry, af the current {x, v) coondinsbes:

Plod(x + b, v + k) Plot(—x + &, —r + k)
Flot —x + &, ¥+ &) Ploaix + &, —p + K]

S5, Incrememt & 0 =8+iQ
6 Cio bo step X,

When four-way symmetry is used to obtain a full eflipse from pixel coordinates generated for the
first quadirant, does overstrike occor? Where?

SOLUTION

Crveratrike occurs ab (0,8, (0, —8), (o, 0), and (—a, O since (0, &) = (=0, &), (0, =& = (-0, =M,
(@, 0) = (@, -0, and (—a, 00 = {—a, —0),

I the midpoint ellipse algonthm we have used only the coordinates (x,. v ) of the last pixel chosen
for part 1 of the curve to compute the initial value g, of the decision parameter g; for part 2. Can we
also make vse of the last value of the decision parameter g7
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SOLUTION

The last computed value of the decrsion parameter p; for part | of the cures s
P =Sln + Ly — B =Fin + 107 + a0y - 8 - o't
w bl + 2y + 1) + @] -+ ) - 0
Aince

g =Jn 4 - l:|=51[1.+£]!+ﬁrt(1-'¢.— 1P — o' b
=Hig+n+{+ali -2+ D -a¥

We hawve

qi =M bj':-"t ‘|'.!'j _E!‘.l'-l _EJ

What sfeps are required to scan-convert an arc using the rigonometric method?
SOLUTION

Set the initial variables: o = major axis; b = minoe axis; (k, &) = coondinates of arc center, | = slep size;
f = slarting angle: §, = ending angle.

Test to derermine whether the entive arc has been scan-converied, IT & = 8, stop.

Compute the values of the 1 and v coordinates:

¥ =gom(l}+ k8  v=agsinft) + &
Plof the poands al the curvent {x, yh o et e Flodlr, ¥}
Increment & 0 = i + §,
Go o siep 2.
[Mode: for the are of & circle @ = b = circle radivs e

What steps are required to generate an arc of a circle using the polynomial method?
SOLUTION

L.

.

Set the initial variables: » = radius; (k. &} = coordinates of arc cemer; x = » coordinate of stant of arc;
xy = x coordimate of end of arc; § = counber step size.

Teat 1o determnine whether the entire arc bas been scan-converted. If x = x,, stop

Compute the value of the y coondinate:

o |

y= VAR

3

Plot at the curtent (x, ) coonrdinates:
Plat(x + b,y + k)

Imgrement x; x = x4 1,
Gio b step 2,

What steps are required to scan-convert a rectangle whose sides are parallel to the coordinate awes”
SOLUTION

1.

Set indtind variables: (x7, v} = coordinates of first point specified; (x;, ;) = coordinates of second point
specified.
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2. Plot the rectangle:

Plotlz;, m ) to (%5, ¥) Piodixz. ) 400 (xp, )
Plob{z. v} to (xy.pa)  Plot(r, ) to (6, w)

127 How would & food-fill algorithm fill the region shown in Fig. 3-36, using the &-connected definition
for region pixels?

SOLUTION

I. Assume that & seed 15 given at coordimate 3, 3. The flood-fill algonthm wall inspect the emght pomnts
surrpunding the seed (4, 4, 3,4, 2,42, 5, 2, 2, 1. 1 4, 2; 4, 3], Since all the points surmounding the seed
beve the region's original color, each point will be filked (see Fig. 3-37T)

2. Each of the cight points found in step | becomes a new seed, and the points surrcunding each new seed
are inspected and fifled. This process contimmes until all the points surreunding all the seeds are nd of the
region's ofiginal color (see Fig. 3-38).

¥ ¥ ¥

T ERENENRENR BN LR N N BNl S N NN N N NN
d X EE N EN NN BN 280 ® ‘o000 BRN
T X N NN N NN N B (N N N BT o BN NN NN N
5 a8 w ae® L N
. soe : cos . .2\%...
g leiekied @ @ @ o eee LN RN NN
2 = e e seese : eee eee
i a8 8 *eee L N N

=
(L8]
[P
[
(e
-
—d
-]
L=

I ¥ 4 5 & T B

(=]

1 2 % 4 5§ & T 8§

Fig. 3-36 Fig. 3-37 Fig. 3-18

328 Wrile 8 pseudo-code procedure to implement the boundary-fill algorithin in the texi in its basic
form, using the d-connected definition for region pixels,

SOLUTION

BoundaryFill (int x, v, fill_color, boundary_color)
i
inl codor;
getPixnel(x, ¥, eolar);
if {codor = boundary_color £& cobor b= fill_color) |
setPixel(x, v, fill_color),
BomdaryFillix + 1, y, fill_color, boundasry_cobor);
BoundaryFillix, w <+ 1, fill_cabor, boundany_color);
BoundaryFillix = 1, », fill_cobor, boundary_cobor);
BoundanyFillix, ¥ = 1. fll_color, boundary_cokor;

319 Wnite a psendo-code procedure to implement the flood-fill algorithm in the text in its basic form,
using the 4-connecied definition for region pixels.
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SOLUTION

FloadFill (int =, v, All_color, onginal_coler)
i
it color;
geiPisel(x, w, colar);
setPixellx, v, fill_coborl;
FloodFill(x + 1, ¥, fill_color, oginal_coler);
FloadFill(z, ¥+ 1, fill_color, orfginal_color);
FloodFill(x — 1, w, Gll_colar, arginal_color);
I"hrndFllI-[:,_p =1, E”_quh:r, nrl];irl.p|_|:n|"r:|;

33 The coordinates of the vertices of a polygon are shown in Fig. 3-39. (a) Write the mitial edge list for
the polygon. (&) State wiich edges will be active on scan lines y =&, 7, 8, 9, and 10,

e N OB %
gl L N N N N
B &, i .»E
T e e ey Ve @
S F._.-+-
i Bl C
it o000 0S
" ¥ E, ¥
1k
1=
T I I I I B B
I 2 3 4 3 & 7 & 9 IO
Fig. 3-39
SOLUTION
{a} Column x contxins the x coondinate of the comesponding edge's bvwer endpoint. Horzontal edges ane o
inciedesd.

Edpe Frnin Voras X 1/m

E, 4 7 9 0
E, 4 7 2 0
E, 7 9 8 0
E, 7 9 4 !
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() An edge becomes active when the scan line vahee y squals the edge'’s v, vadee, The edje remains active
until the scan line value v goes beyond the edge’s v, valee. Thenefore, the active edges for vy =6, 7, &,
Q, and IO appears as follows,

ﬁ.‘_}'=ﬁ| Ez- and Ea.

Ay =T, ¥ = ¥y, for both edges £; and £ so they remain active, Also ot y = 7, edpes E; and E,
become active.
Ay =E, E; and E; sre removed from the edpe st E; and E; remain active.
Ad v =9, the active edges rematn the same, Al v = 10, sdges £, and E; are removed from the edge list
and the edge Hsl ecomes empty,

331 What are the three major adverse side effects of scan conversion?
SOLUTION

The three major adverse effects of scan converston ane staircase appeamnce, uneguill bnghtness of slanied
Imes, and the picket fence problem.

3.32 Suppose that in 3 = 3 super samplmg 2 pixel has three of its subpixels in a red arca, three in a green
arca, and three in 2 blue area, what is the pixel’s overall color?

SOLUTION
Each of the three arcas is responsible for one third of the pixel's overall inensity value, which is i}, §, Ju

333 Wrike a pseudo-code procedure for generating the Koch curve K (after the one in the text for
generating O,
SOLUTION

EKioch-curve {foat x, ¥, ken, alpha nd w)
i
if {m =) {
ken = kenf3;
Kaoch-curvely, v, len, alpha, 5 — 1))
I=1I+ |E|1'-L'-|:|.i!:||1|:m];
# = ¥+ len"sinlalphaj;
Koch-curvedx, ¥, len, abpha — &0, 5 = 1};
x = x4 len*cos{alpha = 60);
¥ = ¥+ len*sin{alpha — &60);
Kaoch-curvedx, . len, alpha + 60, 8 — 1
x=x 4 len"cos{alphs 4 &0);
¥ =¥+ len*sin{alpha + 60}
Eoch-curvelz, ¥, len, alpha, o — 1)
} else
lime(x. ¥, x + lem*ooalalpha), ¥ + ben®*sinlalphal)y

334 Presume that the following statement produces a filled miangle with vertices at (x,, »,), (2, ), and
(%3, %k

tranglex;, ¥y, %7, ¥z, 550 )
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Wrile a peeudo-code procedune lor generating the Sierpinski gasker 5, (afler the procedure in the wext for
generating C)

SOLUTION

SCrasket (Aoat x,, v, x5, ¥ Xy, ¥ ok w)
i

fAoat xyz, ¥izs X130 ¥y3e T Vi

if (m =0} {
Xz = l:.l'| +.¥1:|.|'2',
Y=y i

¥ = 3 + 5l

Y= ':-}'I +.FJ]|"2'~

Xay = (%3 +1:|]."2':

o= vy + 2

S-Caskes(x;, ¥y, 23, Fize X b = 1K

S-Gasket(x)3, ¥iz, %20 F1o X730 P, # = 1R

S-Gasket(x)s, Vi3, ¥, Youu T3 Y3, B = 1R
boelse

irtanmgle(y; , My, T3, Pa. Xy, Vil

Supplementary Problems

Given the following equations, find the cormesponding valwes of ¥ for each value of x (= 2,7, 1} (a)
y=d4+d My=lr40(cdy==Ir=4, and {d) y = =2+ .

What stepa are required to plot a line whose slope is between 457 and 907 wsng Bresenham's method?
What steps are reguired to plot & dashied line?

Show graphically that an ellipse has fowr-way symmetry by plotiing fiour points on the ellipss:
x=gcas{i)+ h ¥ = bin(f) + &

where @ = 2
b=
=1
k=
Y =mn/4. In/d, Su/d, Ta/4

How st Prob. 3.21 be modified if an ellipse is to be rofated {a) =/4, [b) 7/9, and () =/2 radiana?

What steps are required fo scan-convert 8 sector using the trigonometric method?
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342

343

What steps must be added fo a fill algorithm if a region is o be filled with a patbern?

Why is it impartant for the designer o remain consistent when choosing either local or global aliasing?

What steps are regquited b0 scan-comnert a polygonal area using the scan=line algorthm'?

How can we climinate oversinks?



Two-Dimensional
Transformations

Fundamenin| to all computer graphics system is the ability to simulate the manipulation of objects in space.
This simulaicd spatial manipulation is referred to as fransformation, The need for transformation arises
when seversl objects, each of which is independenily defined in its own coordinate system, need to be
properly positioned info a common scene in a master coordinate system. Transformation is also useful in
other areas of the image synthesis process (e.g. viewing transformation in Chap. 5).

There arc two complementary points of view for describing object transformation, The first is that the
ohject wsell i transformed relative to a stationary coordinate system or background. The mathematical
statement of this viewpoint is described by geometric transformations applied to each point of the object.
The second point of view holds that the object is held stationary while the coordinate system is transformed
relative io the object. This effect is aftained through the application of coordinate transformations. An
example that helps to distinguish these two viewpoints involves the movement of an automobile against a
scenic background. We can simulate this by moving the automobile while keeping the backdrop fixed (a
MMlinltna:iun]. Or we can keep the car fixed while moving the backdrop scenery (a coordinate
ransformation)

Thiz chapter covers transformations in the plane, i.e,, the two-dimensional (21D) space. We detail three
basic wansfommations: translation, rotation, and scaling, along with other transformations that can be
gecomplished in terms of a sequence of basic transformations, We describe these operations in
mathematical form suitable for computer processing and show how they are used to achieve the ends of

object manipulas

41 GEOMETRIC TRANSFORMATIONS

o8t us dmpos: o coordinate systém on a plane. An object Oby in the plane can be considered as a set of

ints. Bvery obyject point £ has coordinates (x, v), and so the object is the sum total of all its coordinate

points (Fig =1} If the object is moved to a new position, it can be regarded as a new object OBy, all of

whose coandinate points P can be obtained from the original points P by the applicanon of a geometric
transformation.

£
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" oty

Fig. 4=

Translation

In fransiation, an object is displaced a given distance and direction from its original position. If the
displacement is given by the vector v = i1 + ¢ J, the new object point 7(x', '} can be found by applying
the transformation T, to Plx, ¥) (see Fig. 4-2)

F=TJAF)

where ¥’ =x -+, and v = y+1,.

Fig. 4-2

Rotation about the Orkgin

In rotation, the object is rotated (° about the onigin. The convention is that the direction of rotation is
counterclockwise if # is a positive angle and clockwise if 7 is a negative angle (see Fig. 4-3). The
transformation of rotation & is

F' = Ry(F)

where »' = ycos(f) = ysin(l) and ¥ = xsmi(#) + v cos{f).
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Scaling with Respect to the Origin

Scaling is the process of expanding or compressing the dimensions of an object. Positive scaling
constants 5, and 5, arc used to describe changes in length with respect 1o the x direction and y direction,
rmmlz.f A :ar:allng constani greater than one indicates an expansion 1::1' length, and less than one,
compression of length. The scaling transformation S, " is given by P = 5, (F) where ' = s.x and
¥= A¥. Matice that, after a scaling transformation is ]:rn-l‘nrmnl the new uh;:rt is located at a different
positson relative to the ofigin. In fact, in a scaling transformation the only point that remains fixed 15 the
orgin. Figure 44 shows scaling transformation with scaling factors 5, =2 and 5, = é

" F

Fig. 4-4

If both scaling constants have the same value 5, the scaling transformation is said o be hamogeneous
of whifierm, Furthermone, if 5 = 1, it is a magnifcation and for 5 < 1, a reduction,

Mirror Reflection about an Axis

If either the x or ¥ axis is treated as a mirror, the object has & mirror image or reflection, Since the
reflection P of an object point P is located the same distance from the mirror as P (Fig, 4-3), the mirror
reflection transformation M, abowt the r axis is given by

= MF)

where v =x and ' = —
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P'{-x, 5
— == 1”“-.'}

.
x

bpw -n

Fig. 45

Similarly, the mirtor reflection aboat the y axis is
F = MJF)

where ¥’ = =x and ' =y
Mote that M, = §; _; and M, = §_; ;. The two reflection transformations are simply special cases of
sealing,

Inverse Geometric Transformations

Each peomeiric transformation has an inverse (see App. 1) which is described by the opposite
operation performed by the ransformation:

Translation: T, ' = T, or translation in the opposite direction
Rotation: R;' = R_,. or rotation in the opposite direction
Scaling: 57, =8, 1s

Mirvor reflection: M,! = M, and M, = M,.

4.1 COORDINATE TRANSFORMATIONS

Suppose that we have two coordinate systems in the plane. The first system is located at ongin O and
has coordinates axes xy. The second coordinate system is located at origin (¥ and has coordinate axes x'y’
(Fig, 4-6), Mow cach point in the plane has two coordinate descriptions: {x, ¥) or {x', '), depending on
which coordinate syvstem is used. If we think of the second system 1’y as arising from a transformation
applied 1o the first system xy, we say that a coordinate transformation has been applied. We can descnbe

i
|
|
|

D — —— ﬂr

— v
x'

Pix 7
Lo

— . s

Fig. 4-6
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this transformation by determining how the (x'. ') coordinates of a point P are related to the (x, v)
coordinates of the same pomt.

Translation

If the xy coordinate system is displaced to a new position, where the direction and distance of the
displacement is given by the vector v = 1,1 + 1], the coordinates of a point in both systems are related by
the translation ransformation T

(¥, ) = Lix )
where x =x— 1t and ) =y—1,.

Rotation about the Origin

The xp system is rotated & about the origin (see Fig. 4-7). Then the coordinates of a point in both
systems are related by the rotation transformation By

[-‘IIJ"'I:J = -EB{-"'IJ"}
where ©' = reos(f) + ysin(f} and ' = —xsm() 4 yeos(f).

Pix, )
[F | A
. /

_p"n.

et
et

Scaling with Respect to the Origin

Suppose that a new coordinate system s formed by leaving the origin and coordinate axes unchanged,
but introducing different units of measurement along the x and v axes. If the new units are obfained from
the old units by a scaling of s, along the x axis and 5, along the v axis, the coordinates in the new system
mrﬂaﬁndWcumﬂ:mMmﬂl:nldsyﬂmﬂmhﬂtsmlmghmﬁmﬂmS,,

(', %) =5, , (=¥}

where 1 = (1 /s,)x and 3 = (I /s ). Figure 4-8 shows coordinate scaling wransformation using scaling
factors s, = 7 and =, = L.

Mirror Reflection about an Axis

If the new coordinate system is obtained by reflecting the old system about either x or ¥ axis, the
relationship between coordmnates is given by the coordinate transformations M, and M. For reflection
about the x axis [Fig. 4-%a)]

(¥.¥) = M,ix, )
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Fig. 4-4

where ¢ = x and ¥ = —y. For reflection about the y axis [Fig. 4-%h}]
*. ) = Mix.3)
where x' = —x and ' = p.

¥ ¥y
. * PO, 1) Y ()]
-1 R (=i 1
-] ———md 1
i 'y ¥ o Pox
-

[

i
¥ i i

Fig. 4-9

Notice that the reflected coordinate system is lefi-handed; thus reflection changes the onentation of the
coordinate system. Also note that M, = §, _, and M, = 5_, ;.

Inverse Coordinate Transformations

Each coordinate transformation hag an inverse (se2 App. 1) which can be found by applyving the
opposite transformation:

Translation: T," = T_,, translation in the opposite direction

Rotation: f;' = R_4, rowtion in the opposite direction

S’i:ﬂ.l.'i.l'l,g: 'i'i".r:.:lrP = I4;|||'JJ.|.':_I

Mirror reflection: Af' = M, and M' = M,

43 COMPOSITE TRANSFORMATIONS

More complex geometrnic and coordinate transformations can be buili from the basic transformations
described above by using the process of composition of functions (see App. 1). For example, such
operations as rofation about a point other than the origin or reflection about lmes other than the axes can be
constructed from the basic transformations.

EXAMPLE 1. Magnification of an ohject while keeping its center fixed (see Fig, 4-10), Let the geometric center be
logated at Ok, k) [Fig. 4-10{a)]. Choosing a magnification factor 5 == |, we coostruct the transformation by
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Fig. 410

perfommung the following sequence of basic transformations: (1) ranslate the object so that its center coincides with
the arigin [Fig, 4100501, (31 scale the object with respest to the onigin [Fig, 4=10(c)]. and (3) tranalate the scaled object
back {0 the erigmal position [Frg. 4-10d)].

The required transformation 5, .- can be formed by compositions 5, . =T, - 5,, - T, where v = &l + kJ, By
using compesibon, we can buikl mome general scaling, motaton, and reflection transformations. For these transforma-
tions, we shall use the following notations: (1) §, , p—scaling with respect 1o a fixed point F; (2) f5 p—rotation
about & point F; and (1) M; —reflection abouat & line L.

The matrix description of these ransformatons can be found in Probs. 4.4, 4.7, and 410

Martrix Description of the Basic Transformations
The transformations of rotation, scaling, and reflection can be represented as mattx funclions:

Geometric fransformations Coordinate transformathons
" cog( i) — ginfH) 5 _ cos(H} sin{ i}
" (sinqﬂ} m{ﬂ:) T (—ninl:ul?} mn[ﬂ])

=
Il
[ S = -1""
._:'\ﬂ =
1 e
- O
S
L
1)
A k
Il I
— —]
1
—_—
S
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The translation transformation cannot be expressed as a 2 = 2 matrix fonetion. However, a certain artifice
allows us to infroduce a 3 x 3 matnx function which performs the translation transformation.

We represent the coordinate pair (v, ¥) of a point P by the wmple (x, v 1) This iz simply the
homogensous representation of P (App. 2). Then translation in the direction ¥ = 1.1 + #,J can be expressed
by the matrix function

From this we extract the coordinate pair (x + 1, ¥+ 1)

Concabenation of Matrices

The sdvantage of mtroducing a matix form for tanstanon s that we can oow build complex
transformations by muoltiplying the basic matrix transformations. This process is sometimes called
concafenation of matrices and the resulting matrix is often referred to as the compozite fransformation
marrie (CTM), Here, we are using the fact that the composition of matrix functions s equivalent o matrix
multiplication (App. 1). We mast be able 1o represent the bagic transformations as 3 = 3 homogeneous
coordinate matrices (App. 2) 5o as to be compatible (from the point of view of matnix multiplication} with
the matrix of translation. This is accomplished by augmenting the 2 = 2 matrices with a third column

i4%)

EXAMPLE 2. Express as a matra (Le, CTM) the wansformaion which magnifies an object about its cemter
C{k, k). Fram Example 1, the rpquhﬂ] trans frmation ""‘:.{' cun he wrnilen as

I —xk4h

§ =5k 4k

(] I

F

0 h s O 0 1 0 =k

I & 0 = 0 o1l =k|=

o1 0 0 1 oo 1
Caution on Maitrix Notations

The reader should be alerted 1o the fact that, within the field of computer graphics. there are two
different mafrix nolations that are wsed. This book represenis points by column vectors and applies
transformations by lefi-multiplying by the transformation matnx. We have chosen this approach because it
is the standanrd used in mathematics and computer science texts. The other notation represents points by
row vectors and applies tansformations by night-multiphymg by the tansformation matrix, [t 15 used n
much of the computer graphics literature.

i}
(l‘l) and a third row (00 1) That is
1

= n B
= =
—_= 2

o o n
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To change from one notational style to another, it is necessary to take the transpose of the matrices that
appear in any expression. For example, translation of peint (x, ) in the direction v = .1 + 1J can also be
expressed as

P00
fx py IO 1 O =fx+s v+ 1)
ot 1

EXAMPLE 2 continued. Using the row-vector notation, we have
| LU = 00 I @ 0 ] 0 0
Se= 0o 1 ol{o s offo1 o]= 0 PR
=h =i 1 o0l h k] —sh 4 b —ak4+E

4.4 INSTANCE TRANSFORMATIONS

Chrite often & picture or design is composed of many objects used several times each. In turn, these
objects may also be composed of other symbols and objects, We suppose that each object 15 defined
independently of the picture, in its own coordinate sysiem. We wish o place these objects together to form
the picture or o1 least part of the picture, called a subpictire. We can accomplish this by defining a
trunsformation of coordinates, called an instance fronsformation, which converts obpect coordmates to
pichure coordinates so as fo place or create an instance of the object in the picture coordinaie system.

The instance transformation Ny oo 15 formed as a composition or concatenation of scaling,
rotation, and transkation operations, wswally pr.ffm'mr:d in this order {although any order can be used);

Npum.tﬂrm =T Ryp-85r
With the use of different instance transformations, the same object can be placed in different

positions, sizes, and orentations within a subpicture. For instance, Fig. 4-11{a) i5 placed in the picture
coondinate system of Fig. 4-11{b) by using the instance transformations N sbiecr-

Favpen -"-'lll"l1l Forisa g -

{7 Obsject coordinale 1ysiem. i Picture coordanale §yElem,
Fig. 4-11

Mested Insinnees and Muliilevel Strucinres

A subpicture or picture may exhibit a multilevel or nested structure by being composed of objects
which are, in tum, compaosed of still other objects, and 5o on. Separaie instance transformations must then
be applied, in principle, at cach level of the picture structure for each picture component.

EXAMPLE 3. A picture of an apple tree conains branches, and an apple hangs on each branch. Suppose that each
brinch and apple i described i its owm coordinate system [Figs. 4-12{a) and 4-12(4)]. Then a subpicture call o place



CHAFP. 4] TWO-DIMENSIOMAL TRANSFORMATHINS )

l-ul
!rm__

Kagpe
(#]  Apple.
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Zpracn

A'm“

&) Branch. £} Piclere coordinste sysiem.

Fig. 4-12

an mstance of this branch in the phcture of the ree requires an additional subpicure call o plsce an matanoe of the
apple invoe the branch coordinate system.

We can perform each mstance tunsformation separately, Le., instance the apple in the branch coordinate sysiem
and then mstance both branch end apple from the branch coordinate system to the picture coordinate system.
However, it is much more efficient to transform the apple directly into picture coordinates [ Fig. 4-12(¢)]. This i
accomplished by defining the composite transformation matrix O, e be the composiion of the nested
ingtance transformations from apple coordinates o branch coondinates then from branch coordinabas 1o picture
coordinates:

Crionms, ppis = Npteamms heneuts * Wosmark, uopie
Since the branch subpiciee i only ome bevel bebvw the piche

chdl.rl:hn.u.‘h = Hpi.f.'rh'l.n:h

Solved Problems

4.1  Derive the iransformation that rotates an object point [ about the ongin. Wrte the matnx
representation for this rotation.

SOLUTION
Refer o Fig. 4-13, Definition of the ngonometric funchons sin and cos yields

¥F=romf4+d) V= rsin(f 4+ §)

X = o0 V= FEin g
Using trigonometric identibies, we oblain

reas(f & ) = Hieos fcos g = sinf sin§) = xcos f — ysind



T8

42

4.3

TWO-DIMENSIONAL TRANSFORMATIONS [CHAF 4

rainlf 4+ ¢ = rsin B eosd 4+ cos Psing) = xxinl — roosd

oo —vanl ¥ ooxsind 4 peasd

wiiing = (7). 7 = 7). na

Ry = (l:n:l‘] = rinﬂ)

sim cios

Wi can mow write ™ = Ry - P

Fig. 4-13

(@) Find the matrix that represents rotation of an object by 30° about the origin.
(5) What are the new coordinates of the point P2, =4) after the rotation?

SOLUTION

(g} From Prob. 4.1:
vl
R _(c:ua]tl" —s.j.nilil')_ 2 2
TN smE cos30C ) T 13
2 2
(b1 S0 the new coordmates can be found by multiplying:
Vi1
F ( 2)J_(-ﬂ+1]
N A A W
P

Describe the transformation that rotates an object point, (Ax, ), & about a fixed center of rotation
Pih, k) (Fig. 4-14).

SOLUTION

We determing the transformation 8y p in three steps: (1) transiate so that the center of rotation P i at the
origin, (2} perform & rotation of & degrees about the ongin, and (3) tanslate P back to [h, £},
Using v = &I + kJ as the translation vector, we buikd By » by composition of tansformations:

Rﬂ.ﬂ'=r1'n|ﬁ"r—1l
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Fig, 4-14

44  Write the general form of the matrix for retation about a point PA, k).
SOLUTION
Following Prob, 4.3, we write By p =T, - By - T_,, where v = Ml + &J. Using the 3 = 3 homogeneous
coorfinate form for the redation and translabon matnees, we have

1 0 & cosllf) =sini{d 0O I 0 =k
Ryp=|0 1 & ginl({) cos(f 0 o1 -k
LU ] i} 1 o o 1

fcos(l)  —sin(l)  [—hcosl@) + ksim{l) + hl]

sin(f)  cos(®)  [=hen() = kcos(f) + k]
0 i |

4.5  Perform a 43° rotation of thangle A{0,0), B(1, 1), O05, 2} (2} about the origin and (&) about
P(-1, =1).
SOLUTION
We represent the tnangle by a matnx formed from the homogenéous coordmates of the vertices:
A B C

0 1 3

o 1 2

1 11
{a} The matrix of rotation is

cosd3®  —gm4d5” 0
Ryp = || sindd cigdd” 0 | =

] 0 l

Sp the coordinates 4"8'C" of the rated triangle A8 can be found as

i
N 31
T "7 e 1 s “r
WBC)= Ry B =| VI vE (.;. 1 1)= T3
i 2 2

[} ] 1 1 | 1

Thus A" = {0, 0), B = (0, +/2}, and O = (/2. {420
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(& From Prob. 4.4, the rotation matrix is given by Ng. p =T, - Ry - T_,, where v= -1 - 1. 5o

CE vioovE
(1{!-1)2 2 (|n| 2 2
Rypp=[0 1 —I S W ot 1=]|,3 2
oo T Foo {I-[JI) 5 5 WI-n
0 o1 0 0 1
Mo
ViVt
2 2 01 5
"B =Ry pe [4 = o1 2
A FC] = Rys- p - [ABC) ii ‘-‘fw’z—n L
il 1] 1

-1 ~1 (}+2-1)

=|wi-1 2/3I-1 (Vi-1
l 1 1

Sod' =(=1, 2~} BF=(=12¢T= 1), and C" = (§+T = LEJI =1}

4.6  Find the ransformation that scales (with respect to the origin) by () 2 units in the X direction, (&) b
units in the ¥ direction, and () simubtaneously @ unifs in the X direction and b uniis in the ¥
direction.

SOLUTION
{a) The scaling transformation applied o a point Px, v) prodoces the poant (ax, ¥). 'We can write this in

| 5 90)-()

(hy Az m part (), the required wransformation can be wrilten in matrix form as 5, . - P, 50

(6 96)-()

(¢} Scaling in both disections is described by the transformation 1’ = ax and ' = by, Writing this in mainix

| 5 90)-()

4.7  Write the general form of a scaling matrix with respect to a fixed point POk, K).

SOLUTION
Follerwing the same gemeral procedune as in Probs, 4.3 and 4.4, we write the required transformation with
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v =kl 4 LJ as

Sapr = Toodup Ty

= o B O T e

4.8  Magnify the triangle with vertices 4(0, 0}, B(1, 1), and C(5, 2) to twice its size while keeping
5, 2) fixed.

SOLUTION
From Prob, 4,7, we can write the required ransformation with v = 51 + 27 as

Bpr=T -8y T,
| -5 0 -5
=2 |=10 2 =1
1 (n o1
x

1 00
=fa 1 2110 2 0
i 0ol
Representing a point P with coonlinates {x, v} by the columa vector r). wi have

=
= - =

o1
i

20 5% /0y -5
Siap-d=J0 2 =2 ||0]=] -2

oo 1/ 1]

20 =8y F1Y -1
Siap-B=[0 2 =12 1]l= 'i]]

I AN 1

20 5% f5) 5
Sap-C=[0 2 <2 ||2]=|2

(N AN, l

SoAd" = (=5 =1} & = (=30, and " = {5, Z}. Note that, since the mangle ARC 15 completely determinsd
by its vertices, we could have saved much wniting by representing the vertices uging a 3 » 3 matnx

i1 &
[ec)=|0 1 2
111
and applying 5; ; - to this. So

20 -3 o1 s -5 -} 5
S - [ABCl= |0 2 =2 o1 2)l=|-=2 0 2] =[4FC)
oo | 1 11 1 11

4.9  Descnbe the transformation M, which reflects an object about a line L.
SOLUTION

Let line L im Fig. 4-15 have a v intercept (0, b} and an angle of inclination & {with respest to the © ais).
We reduce the descrption to known transformations:
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Translate ibe miersection point B to the ongin.
Rotate by —& so that line L alipns with the » axis.
Mirror-reflect sbout ibe © axis.

Rotae back by

Translste B back o (0, h).

L

In tansformation notation, we have
My=T, Ry -M,-R 4T,

where v = bl

L} |

Fig. 4-15

410 Find the form of the matrix for reflection about a line L with slope m and » intercept (0, b).

SOLUTION

Following Prob. 4.9 and spphyng the fact that the angle of inchnation of a line 15 related to its slope m by
the equation tan{{f} = m, we have with v = bl

My=T, Ryg-M, R 4T,

I 0 0% feos(®) —sini® 0% 1 0 0 cosit)  sin{f) 0y F1 0 0
=|0 1 & gin( ) cos(d) O (10 =1 @ =) cos(f) 0 0 1 =h
oo L] ] i [i] o1 L] 1] 1 a o 1

MNow if wn{f) = m, standard trigonometry yviekds sin{d) = m/+/m? + | and cos{f) = 1/ym® + 1. Substins-

ing thess values for sin(fy and cos(f) after matrin mubtiplicaton, we have

I —mf 2m — 2 B
]l 41l mi+1

M= 2m w-1 2
4l w41 ot
i 0 1

Reflect the diamond-shaped polygon whose vertices are 4(—1, 0), B(0, —2), C(1, 0), and D{0, 2)
about {a) the horizootal line y = 2, (F) the verfical line x = 2, and () the line y=x + 2,
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SOLUTION
We represent the vertices of the polygon by the homogeneous coordinate matrix

-1 010
F= B =2 0 2
1 111

From Probk. 4.9, the reflection mairix can be writien as
.L!If_ = T,‘. - .R! - .“. : R_g - T_.r

{g) The line ¥ = 2 has y intercept {0, 2) and makes an angle of 07 with the x axis. 5o wath # = 0 and v = 2J,
the transfommation matrix is

I o dq i & 0 | LI I 0 0 | o 1] I a o
My=0 1 2 a1 4jffo =1 o o1 e 1 =2 |=|0 -1 4
G o1 0o 1 {1 o1 oo 1 0 o I a0 1

This same matrix could have been obtined directly by using the resulis of Prob. 4.10 with slope m = 0
and y interoept =2 To reflect the polygon, we set

4 B OCI¥
1 LI =1 g 1 0 =1 @ 1 0
My V=D -1 4 i =2 0 2|= 4 5 4 2
0 LI I 1 1 & I 111
Comverting from homogeneows coordmates, 4 = (=1, 4), & = (0, 8), " = (1,4}, and I¥ = {{}, 2).

(#) The vertical line x = 2 has no y intercept amd an infinite slope! We can use M,, reflection about the ¥
axis, o write the desired reflection by (1) trunslating the given ling two units over to the v axis, (2) reflext
about the v &xis, and (3) wanslase hack two anits, So with v = 21,

I o 2 =1 0 4 1 0 =2 =1 0 4
=10 1 0 ¢ 1 0 & 1 0= a1 0
¢ 01 vt 01 0 1 ool

-1 0 4\f-1 o0 1 0 f5 4 1 4
M, F=| o1 0 0 -2 0 2|l={0 -2 0 2
00 1 1111 N I T

or A = (5,00, & = (4, =2), & = (3 0), and I¥ = (4, 2},
(c} The ling ¥ = x -+ 2 has stope 1 and a y intercept (0, 2), From Prob. 4.10, with m = | and & = 2, we find

k1 =2
M=|10 2
o0 1

The required coordinates 4°, &, ', and O can nover be fionand.

01 -2%f-1 0 1 0 -2 4 =20
M Fe |1 O 2 1] -2 0 2| = 1 2 1 2
o0 1 11§ 1 (A T I
So A =(—2, 1), B ={—4.2), € =(—2.3), and ¥ = {0, 2).

1 a

b1

The special case when b = 0 is called shearing in the x direction, When a = 0, we have shearing in
the y direction. lllustrate the effect of thess shearng transformations on the square A(0, 0), 8(1, 0},
Cih, 1), and X0, 1) when @ = 2 and & = 3,

4.12  The matrix ( ) defines a transformation called a simultaneous shearing or shearing for short.
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SOLUTION

Figure 4-16{a} shows the onginal square, Fig. 4-16(8) shows shearing in the x direction, Fig. 4-16(c)
shorws shearing in the v direction, and Fig. 4-16{d) shows shearing in both directions,

Fi F

-
F ] i, 1) = 1y
D | § [ ] - || 1 [ 1
A B x A B 3 x
) ]
¥ ¥
B LS o4
= P BN
o o,
[ S A | Ll -
Al x x
(e i)

Fig. 4-16

4.13  An observer standing at the origin sees a point A1, 1). If the point is translated one unit in the
direction v = 1, ils new coordinate position iz (2, 1). Suppose instead that the ohserver stepped
back one unit along the x axiz. What would be the apparent coordinates of P with respect to the
abserver?

SOLUTHON

The problem can be g2t up as a ansformation of coordinate systems, I we translate the ongin & in the
direction ¥ = —1 (0 a new position a1 OF) the coordmates of / m this system can be found by the tanslaion
T

I OXG

So the new coordinates are (2, 1), This has the following interpretation: & displacement of one unit in a given
direction can be schieved by eithes moving the object forwand of stepping back Fromm o,

4.14 An object is defined with respect to a coordinate system whose units are measured in feet, 1f an
observer's coordinate system uses inches as the basic unit, what is the coordinate transformation
used o descnbe object coordinates in the observer’s coordmate system?
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4.15

4.16

4.17

SOLUTION
Since there are 12 inches to a foot, the required transformation can be described by a coordinate scaling

transformation with & = J or
S (T 0 )= (2 2)
e 0 012

s (3)= (5 2)()=(5)

and so

Find the equation of the circle (¥F + () = 1 in terms of 1y coordinates, assuming that the <y
coordinate system results from a scaling of @ umits in the x direction and b unats in the ¥ direction.

SOLUTION
Fromn the eguateons for a coordinate scaling transformation, we find

Substituting, we have

1 "1
6 =

Motice that as a result of scaling, the equation of the circle is transformed 1o the equation of an ellipse in the 1

coardinate sysem,

Find the equation of the line ¥ = mx’ 4+ & in xy coordinates if the x'y' coondinate system results
from a H° rofation of the xv coordinate sysiem,

SOLUTION

The rotation coordinate ransformation eguations can be written as
& =xcos(PF) 4 vEm®F ) =p ¥ = =usin{0") + pos(3) = =x
Substituting, we find —x = my 4 b. Solving for v, we have y = [—1/mx — bim.

Find the mstance fransformation which places a half-size copy of the sgquare A0, 0), B(1,0),
01, 1), B0, 1) [Fig. 4-1T{a)] into a master picture coordinate system so that the center of the
sguare 15 at (=1, =1} [Fig. 4-17(b)].
SOLUTION
The center of the square ABCD is st P(§, 1). We shall first apply a scaling transformation while keeping P
fixed {see Prob, 4.7) Then we shall apply a wanslatton that meeves the center P o (=1, =1} Taking
5 ={=1)— i) = — 3 and similarly ¢, = =1 (30 ¥ = — 1 = }J), we obkain
_g)
-3
4
|

AT |
Npousesquee = T - Siipe= [0 1 =310 § {]=|0
§ 0 | o o 1 0

D M= O



B6 TWO-DIMENSIONAL TRANSFORMATIONS [CHAPR 4

J'mi Fpicises
e c
ap
- | i
A LT V- -1 =i
@ -t
Pﬂ
—. =
i L]
Fig. 417
418 Write the composite transformation that creates the design in Fig. 4-19 from the symbols in Fig.
4-18.
Firlangle Fugraer
IA | |p——
=i [ g
0] ]
Fig. 4-18
SOLUTION

First we create an instance of the mangle [Fig. 4-18(7)] in the square [Fig. 4-18(5}]. Since the bass of the
triangle rust be kalved while keeping the height fived at ome wnit, the approprizie instance transformation ia
-""'Iq-u-r.um’: = Ll 'SI_r.E.I'

The instance translonmation needed 1o place the squape af the desired position ia the plebore eoordinate
systerm (Fig. 4. 19) s a translabion i the divscton v =1+ 1

Nm.w = r‘l

Then the composits fransformation for placing the mangle into the pcture 15
e cangle = Npactare sguare ¥ quane riszgic

Friciure

Fig. 4-19
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4.10

4.1

4,22

4.23

4.24

4.15

4.6

4.27

428

andl the composile tmesfomation o plece the square iato the pletare is

Supplementary Problems
What s the relationship between the rotations Ry, B 4, and R '?

Deacribe the transformations used in magnification and redwction with respect io the ongin. Find the mew
coordinates of the wiangle A(0, 03, &1, 13, OF, 2) afier i has been (o) magnified 1o reice i size and (&)
redoces] o half fs sixe,

Show that reflection about the line v = x &5 attained by reversing coondinates. That s,
M v, b= [y, x)

Show that the ordér m which fransformations are performed i important by the fmasformation of tfangle
AL, B0, 1), (1. 1), by (@) rotating 457 about the ongin and then translating in the direction of vector 1,
and (b} translating and then rotating.

An object point Pix. ¥ is translabed in the dircetion v = ol + B and simualtaneously an ohserver moves in the
direction v, Show that theve B no apparent motion (from the poine of view of the observer) of the object point,

Assuming that we have a mathematical eguation defining a curve In x'y coordinates, and the x'y'
coordinate system 18 the result of a coordinate transformation from the oy coordinate system, write
the equation m terms of xv coordinanes,

Show that
Ty 'Tvl = T'.', Ty, = rv.-v,

Show that 8,5 - 5, 0= 8.5 S0 = Sy
Show that B, - Ry = Ry R, = R, ;.

Find the condition umnder which we have

Is & simultaneous sheaning the same as a shearing in one direction fiodlowed by a shearing in anodber direction?
Why?

Find the condition wnder which we can swiich the order of a rotation snd & simultaneous shearing and still get
thie same result,
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Express a simultancous shearing in tenms of rotation and scaling iransformations,
Express By in terms of sheanng and scaling tmnsformations,

Enxpress Ay in terms of sheanng ransformations.

Provee that the 30 commposite transformation matrix s always in the following form:

a b ¢
d e |
0 o1

Consider a line from Py $o P and an arbitmry point P on the line. Prove that for any given composite
transformation the transformed P is on the line between the tansformations of P, and £y,



Two-Dimensional
Viewing and Clipping

Muech like what we see in real life through a small window on the wall or the viewfinder of a camera, a
computer-generated image ofien depicis a partial view of a large scene, Objects are placed into the scene
by modeling transformations to a master coondinate system, commonly referred to as the world coordinate
syatem (WIS ). A rectangular window with its edges parallel to the axes of the WCS is used to select the
portion of the scene for which an image is to be generated (see Fig. 5-1). Sometimes an additional
coordinate gvstem called the viewing coondinate system 15 infroduced to simulate the effect of moving
ind /or tiliing the camera.
Cip the other hand, an image representing a view often becomes part of a larger image, like a photo on
&n album page, which models a computer monitor’s display area. Since album pages vary and monitor
plees dilfer from one system to another, we want 1o introduce a device-independent tool to describe the
display aren. This tool is called the normalized device coordinate system (NDCS) in which a unit (1 = 1)
suueare whose lower left comer is at the ongin of the coordinate system defines the display area of a virtual
device! A rectangular viewport with its cdges parallel to the axes of the NDCS is used to specify a
fub-negion af the display arca that embodies the image.

Viswing
coordinate
sysiem
] ] W .
Windos Wodcstation Ll - m
F i h VIEWpt
/ A : Pl S
K, LYWA' ¥
!'rlrl"; A -"f{l‘""' Y 'ff |
4 _.-"" .'|_.-"l "."
. A
",
il *
N L] 1 — - - F
* HNomalized device Devinsmge
World eoomdinale sy@dm coordimme system eoardinale sysleem

Flg. 5-1 Viewing transformation.

Ry
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The process that comvers ofject coondinaies in WS to normalized device coondinates 15 called
wifidow=to-viewport mapping o normalization transformation, which is the subject of Sect 5.1, The
process that maps normalized device coordinates to discrete device/image coordinates is called work-
station tronsformation, which s cssentially a second window-to-viewport mapping, with a workstation
window in the normalized device coordinate system and a workstation viewport in the device coordinate
sysiem, Collectively, these two coordinate-mapping operations are referred to as wiewing fromsformiriion,

Workstation transformation is dependent on the resalution of the display device/frame buffer, When
the whole display arca of the virual device is mapped to a physical device that does not have a 1/1 aspect
ratio, it may be mapped to a square sub-region (sex Fig. 5-1) 50 a8 o avold introducing unwanted
geometnc distortion.

Along with the convenience and flexibality of using a wmdow to specify a localized view comes the
need for clipping, since objects in the scene may be completely inside the window, completely outside the
window, or partially visible through the window (e.g. the mountain-like polyvgon in Fig. 5-1). The clipping
operation eliminates objects or portions of objects that are oot visible through the window 10 ensure the
proper construction of the commesponding image.

Mote that clipping may occur in the world coordinate or viewing coordinate space, where the window
8 used to clip the objects; it may also occur m the normalized device coordinate space, where the
viewportworkstation window s used to chp. In cither case we refer to the window or the view-
portworkstafion window as the clipping window, We discuss point clipping, line clipping, and polygon
clipping in Secs. 5.2, 5.3, and 5.4, respectively.

51 WINDOW-TO-VIEWPORT MAPPING

A window is specified by four world coordinates: wr;., WE . Wi, and wye . (see Fig. 5-2).
Similarly, a viewport is described by four normalized device coordmates: me . oo, g, and 0.
The objective of window-to-viewport mapping is o convert the world coordinates (wx, wy) of an arbitrary
peint 1o its corresponding normalized device coordinates (px, vv). In order 1o maintain the same relative

placement of the point in the viewport as in the window, we reguire:;

Pl Mlmin o T T Wmin, gy T Emin  I¥ T PVwin
Wiray — Wi M — B Wax — W W — Vi
Thius
i — i
Ur = M{m{ - w_:m] + Plmia
Wiy = Wimin
I —
iy = M{“}. — W) F ¥

Wheran — W

Smnce the cight coordinate values that define the window and the viewport are just constants, we can
express these two formolas for computing (e, v from (wx, Wi in erms of a translate—scale—ranslate

transformation A
ox wr
e | =N wp
| l
I':"Th! - I':"I:H.il'l u ﬂ

1 o LN Wormey — Wimin 1 0 =W
N=[|0 1T ol 0 EV g — 1Vmin ol ¢ 1 —Wip
0 o ;

Wiy = W, 10 1

whene

0 0 1
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Es
Wimmaon 3
WY I
| e, e | I —
w'ﬁ'
v, ) i
wy o !
Wl &J |
|
|:|I
0 o v, 1
-
L
Wi L L.

Fig. 52 Window-fo-wigwnior mappng.

Mote that geometne distortions occur (e.g. squares in the window become rectangles in the viewpaort)
whenever the teo scaling constants differ.

51 POINT CLIFPIMNG
Point clipping is essentially the evaluation of the following mequalities:
Xmin Exfxrru: and ¥min f-“'f-'l"-n

WHETE Xins T s Vein 800 ¥y, define the clipping window. A point (x, ¥) is considered inside the window
when the mequalities all evaluate 1o e,

5.3 LINE CLIPPING

Lines that do not intersect the clipping window are gither completely mside the window or completely
outside the window. On the other hand, & line that ntersects the clipping window is divided by the
mntersection point{s) into segments that are either inside or outside the window. The following algorithms
provide efficient ways o decide the spatial relationship between an arbitrary line and the clipping window
and to find intersection point(s).

The Cohen-Sutherland Algoriths

In this algorithm we divide the line clipping process into two phases: (1) identify those lmes which
intersect the clipping window and so need fo be clipped and (2} perform the clhipping.

All lines fall into one of the following clipping categories:

1. Fisible—both endpoints of the ling lie within the window,

2. Nor wisible—the line definitely hies outside the window. This wall occur if the line from (i, 1) o

(x5, 4 ) satisfies any one of the following four inequalities:
Ny Xz = K ¥ ¥z ® Vo

I|-I]- L Routn _'||"|._'||’= "::_'Fm

3. Clipping cordidate—the line is in neither category | nor 2.

In Fig. 5-3, line AR is in category | {visibie); lines OO and EF are in category 2 (nod visible); and lines
GH, O, and K5 are in category 3 (clipping candidate).
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ﬂl

|

|

|
Frugn
Fig. 53

The algorthm employs an efficient procedore for finding the category of a line. It proceeds m two
steps:

1. Assign a4-bit region code to each endpoint of the lme. The code 15 determained acconding to which
of the following nine regions of the plane the endpoint lies in

1001 1000, 1010

Yrax === f ==
(01 00 QO
-!"min . I
0101 ' 0100 | 0110

I

s Fmax

Starting from the leftmost bit, each bit of the code is set to troe (1) or false (0 acconding to the
scheme

Bit | = endpoint is above the window = sign (¥ = Ve, )

Bit 2 = endpoint is below the window = sign { ¥, = ¥)

Bit 3 = endpoint is to the nght of the window = sign (x = x,..}

Bit 4 = endpoint 15 to the keft of the wndow = sign (x,, = x)
We use the convention that signfa) = 1 if @ 15 positive, O otherwise. OF course, a pomt with code
D000 15 inside the window.

2, The line is visible if hoth region codes are 0000, and not visible if the bitwise logical AND of the
cipdes is not DO, and a candidate for clipping if the bitwise logical AND of the region codes is
(MHM} {see Frob, 3.8),

For & line in category 3 we proceed fo find the intersection point of the line with one of the boundanes

of the clipping window, or o be exact, with the infinite extension of ene of the boundaries (see Fig, 5-4),
We choose an endpoint of the line, say {x,, »;), that is ouigide the window, ie., whose region code is not
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(00, We then select an extended boundary line by ohserving that those boundary lines that are candidates
for intersection are the ones for which the chosen endpoint must be “pushed across™ so a8 o change a 1"
in s code by a “0" {see Fig. 5-4), This means:

If bit 115 1, indersect with line v = v_..

If bit 2 is 1, intersect with line v = ;.

If bit 3 is 1, infersect with lme x = 3.

If bit 4 is 1, intersect with line x = x4,.

Conswder line OO m Fig. 54, If endpoint O is chosen, then the botiom boumdary live v = v, 18
selected for computing intersection, On the other hand, if endpomt D s chosen, then either the top
boundary lme v = vy, or the nght boundary hine x = x_, is used, The coordmmates of the mtersection
pHrinil are

[ X = Xy OF X if the boundary line is vertical

¥ =¥y +mix, —x)

l =5+ = )m iff the boundary line is horizontal

-""n' = -""ln.ln mj"m

where m = [y — ¥ )iz —x;) is the slope of the line.

Mow we replace endpoint (x,, v, } with the intersection point (x;, ¥}, efectively eliminating the porion
of the onginal line that is on the outside of the selecied window boundary. The new eéndpoint is then
naignmi afh up-r.‘la!l:d ﬂgi.ﬂh cole and the :.'Ii'ppud heme mﬂ'.‘ah:pmaﬂ:r]. and handled in the sarme way. This
ierative process terminates when we finally reach a clipped line that belongs to either category 1 {visible)
or category 2 (not visible),

Midpoint Subdivision

An alternative way to process a line in category 3 s based on binary search. The line is divided an its
midpoint into two shorter line segments. The clipping categonies of the two new line segments are then
determined by their region codes. Each sepment in category 3 is divided again info shorter segments and
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categonzed. This bisection and categorization process continues until each line segment that spans across &
window boundary (hence encompasses an intersection point) reaches a threshold for line size and all other
segments are either in category | [visible) or in category 2 (invizgible). The midpoint coordinates (x_, v, ) of
a line joining (x;. v, ) and (x5, »;) are given by

_ntx ¥ +r

Im 1 J':'m 1

The example in Fig. 5§ illustrates how midpoint subdivision is used to zoom in onto the teo
intersection points §; and £, with 10 bisections, The process continnes wntil we reach two line segments that
are, say, pixel-sized, i.e., mapped to one single pixel each in the image space. If the maximom mamber of
pixnels in a line 15 M, this method will yield a pixel-sized line segment in & subdivisions, where 2% = M ar
N = logy M. For instance, when M = 1024 we need at most N = log, 1024 = 10 subdivisions.

Fig. &5

The Liang-Barsky Algorithm

The following parametric equations represent & line from {x;, ¥;) 0 (x5, ) along with it infinite
exiEnsion:

T=x 4+ Ar-u
y=y+by-u

where Av = x; — x; and Ay = y; — y,. The line iself corresponds to 0 = w =< [ (sée Fig. 5-6). Notice that
when we traverse along the extended line with w increasing from —oo to o0, we st move from the
outside to the mnside of the clipping window's two boundary lines {bottomn and left), and then move from
the inside to the outside of the other two boundary lines (top and right). If we use w; and u,, where u; < u,,
i represent the beginning and end of the visible portion of the line, we have uy = maximum(0, u;, u,) and
sy = minimumi 1, &, 1), where w, u,, o, and u, correspond to the infersection point of the extended line
with the window's left, bottom, top, and nght boundary, respectively.
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Mow consider the tols we peed 1o tom this basic idea mmto an efficient algorithm, For pont (x, )
inside the clipping window, we have

X

min

Frntin E..I'I!I + ﬁf' W E.rm.u.

ol T S W T

Rewrite the four inequalities as

whens

(rbserve

P = s k=1,2,34

py=—hAx iy =X = Tnin (left)

Py = Ax gy = Npgy = I {right)

Py = =4y 91 = ¥ = ¥min [ bottom)

Py = Ay G5 =Vom =y (0P}
the following facts:

if py = 0, the line is parallel to the corresponding boundary and

if g, =10, the ling is completely outside the boundary and can be eliminated
if gy =0, the line is inside the boundary and needs further consideration,

if oy = U, the extended line proceeds from the outside to the inside of the corresponding boundary
I,

if py = 0, the extended line procecds from the inside to the cutside of the corresponding boundary
line,

when gy, 38 0, the valse of » that coresponds to the mtersectron point is gy./9,.

The Liang—-Barsky algorthm for finding the wisible porion of the ling, if any, can be stated a8 a four-step

process:

If pr, = 0 and g, = 0 for any & eliminate the line and stop. Otherwise proceed to the next step,
For all k such that p, < 0, caleulate r; = g;/p,. Let u) be the maxinmum of the set containing 0
and the caleulated r values.

For all & such that p, = 0, caleulate r; = g,/p;. Let w; be the minimom of the set containing 1
and the calculated r values.

Ifw) = wy, climinate the line since it is completely outside the clipping window. Otherwise, use
and w; to calculate the endpomts of the clipped line.
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54 POLYGON CLIPPING
In this section we consider the case of using & polygonal clipping window o clip a polygon.

Convex Polygonal Clipping Windows

A polygon is called comvex if the line joining any two interior points of the polygon lies completely
mside the polygon (sce Fig. 5-7h A noa-convex polvgon is said o be concave,

i onvex I nncave
podygon polygoa

Fig. 5-7

By convenfion, a polygon with vertices Py, ..., Py (and edges P, P and Py P)) s said to be
pasifively oriented if a wur of the vertices in the given onder produces a coumterclockwise cincuit.

Equivalently, the left hand of a person standing along any directed edge P_ P, or F, P, would be
pointing inside the polygon [see orientations in Figs. 5-8(g) and 5-8(h)].

o C
&
B E
E B
A A
{g) Positbve othelation. {h} Megntive orientatian.
Fig. 58

Let A(xy, v, ) and 8{x;, y;) be the endpoints of a directed line segment. A pomt Plx, ») will be to the
left of the line segment if the expression C = (x; = x (¥ = ¥ ) = (5 = ¥ Kx = x;) 18 positive (see Prob.
5.13). We say that the point is to the right of the line segment if this quantity is negative. If a point P is to
the right of any one edge of a positively oriented, convex polygon, it is outside the polygon. If it is to the
left of every edge of the palygon, it is inside the polygon,

Thiz observation forms the basis for clipping any polygon, convex OF CONCEVE, against 3 convex
polygomal clipping wimdow,

The Sutherland-Hodgman Algorithm

LetFPy..... Py be the vertex list of the polygon to be clipped. Let edge E, determined by endpoints A
and B, be any edge of the posttively oriented, convex clipping polygon. We clip each edge of the polvgon in
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turn against the edge £ of the clipping polygon, forming a new polygon whose vertices are determined as
follows.
Consider the edge P,_ F:
1. Ifboth P,_; and P, are to the left of the edge, vertex P is placed on the verfex cufpuf lisf of the
clipped polygon [Fig. 5-9a)).
2. Ifboth P, and F; are to the right of the edge, nothing 15 placed on the veriex output list [Fig.
S0 h].
3. P, 1510 the lefi and P, is to the right of the edge E, the intersection point ! of line segment
PP, with the extended edge F is calculated and placed on the vertex output list [Fig. 5-9{c]].
4, If F._; is to the right and F, is 1o the keft of edge E, the intersection point J of the ling segrment
F_ P, with the extended edge £ is calculated. Both [ and P, are placed on the vertex output list
[Fig. 5-%(d}].

The alporithm proceeds in stages by passing cach clipped polvoon to the next edge of the window and
clipping. See Probs, 5.14 and 5.15.

E E E E
I | | I
| | | I
: | | |
, nl Fl‘ . o) al
utpal [ &
MG duelput
y Chatput
A A A
Py | | B LI
| i I
I | |
Llr tlr Ll w
fa 8 e

Fig. 59

Special attenbion 15 necessary i using the Sutherland-Hodgman algorithm i order to avoid unwanted
cficets. Consider the example in Fig, 5-10{a). The correct result should consist of two disconnecied parts, &
square in the lower left comer of the clipping window and a triangle at the top [see Fig, 5-10(k]]. However,
the algorithm produces a list of vertices (sce Prob. 5,16} that forms a figure with the two parts connected by
extra edges [see Fig, 5-10{c)]. The fact that these edges are drawn twice in opposite direction can be used
to devise a post-processing step w eliminate thet,

The Weiler-Atherton Algorithm

Let the clipping window be mitially called the clip polygon, and the palygon to be clipped the subject
polygon [see Fig. 5-11{a)]. We start with an arbitrary verbex of the subject polvgon and frace around iis
border in the clockwise direction until an intersection with the clip polygon 15 encounterad:

# Ifthe edge enters the clip polygon, record the intersection point and continue to trace the subject

polygon.
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i Eara
P Gl
P I
P
P ' I
Clipping o
P £ windaw
] {& {ch
Fig. 5-10

¢ [ the edge leaves the clip polygon, record the infersection point and make a night tum to follow
the clip polygon in the same maner (i.e., treat the clip polygon as subject polygon and the subject
polvgen as clip polygon and proceed as before).

Whenever our path of traversal forms a sub-polygon we output the sub-polyvgon as part of the overall result
We then continue fo trace the rest of the original subpect palygon from a recorded intersection point that
marks the beginning of & not-vet-traced edge or portion of an edge. The algorithm ferminates when the
entire border of the original subject polygon has been traced exactly once.

Subiwct pohvgon
in 3 Srarting veriex
IJ-I hll ]ﬂ_l
% g r
4 T | 4 i \/
. ‘ M ‘3 ' sy T 2
Chip podygon

] [L}]

Fig. 511

For example, the numbers in Fig. 5-11(a) indicate the order in which the edges and portions of edges
are traced. We begin a the starting vertex and continue along the same cdge (from 1 to 2) of the subject
polygon as it enters the clip polygon. As we move along the edge that is leaving the clip polygon we make
a right turn {from 4 1o 5) onto the clip polygon, which is now considered the subject polygon. Followmg
the same logic leads to the next nght turn (from 5 o 6) onio the current clip polyvgon, which is really the
onginal subject polygon, With the nexi step done (from 7 @ 8) in the same way we have a sub-polvgon for
output [see Fig, 5-11{8)]. We then resume our traversal of the ooginal subject polygon from the recorded
indersection point where we first changed our course, Going from 9 @0 10 e 11 produces no owtput, After
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skipping the already-traversed 6 and 7, we continue with 12 and 13 and come to an end. The figure in Fig.
S=11{k} is the final result,

Applying the Weiler-Atherton algorithm to clip the polygon in Fig. 5-104a) produces correct result
[see Fig. 5-12{a) and {#)].
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Fig. 5-12

5.5 EXAMPLE: A 2D GRAPHICS PIPELINE

Shared by many graphics svstems is the overall system architecture called the graphics pipeline. The

operational organization of a 2D graphics pipeling is shown in Fig. 5-13. Although 21 graphics is typically
treated as a special case (2 = 0) of three-dimensional graphics, it demonstrates the common working

principle and basic application of these pipelined systems.

Mol ing ST I Samn .
ewiag Drispary
ket —J Trnsfreyias o N -
prarn Trssfirmteg | Cowvion e b e
Trurs fomotom Werakew d viewror A nhr @ rages
frares

Fig. 5-13 A 30 graphics pipeline,

At the beginning of the pipeline we have object data (e.g., vertex coordinates for lines and pelygons
that make up individual objects) stored in application-specific data structures, A graphics application uses
system subroutines to initialize and 1o change, among other things, the transformations that are to be
applied to the onginal data, window and viewport settings, and the color attributes of the objects.
Whenever a drawing subroutine is called to render a pre-defined objpect, the graphics system first applics
the specified modeling transformation 1o the original data, then carmes out viewing transformation using
the current window and viewport settings, and finally performs scan conversion to set the proper pixels in
the frame buffer with the specified color atiributes.

Suppose that we have an ohject centered in it own coordinate systemn [see Fig. 5=14{a)], and we are to
construct & sequence of images that animates the object rotating around its center and moving along a
cincular path in a square display area [see Fig. 3-14(F)]. We generate each image as follows: first rotate the
object around its cenfer by angle =, then translate the rotated object by offset - 1 1o position its center on the
positree ¥ axis of the WCS, and rotate it with respect to the onem of the WCS by angle f. We control the
amount of the first rofation from one mage to the next by Ax, and that of the second rotation by AS
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(4] (8
Fig. 5-14

window{-winsize/2, winsize/2, -winsize'2, winsize/2);

x=1

while {1} |
setColorbackground);
clear();
setColoncolor);
pushCTM{);
translate(offset, 0);
rofate]z);
drawObject();
popCTMI);
I = x4 Ax;
rodtate( AfF);

}

We first set the window of winsize by winsize to be sufficiently large and centered at the origin of the
WCS to cover the entire scene. The system’s default viewport coincides with the unit display arca in the
WDCS. The default workstation window is the same a5 the viewport and the defauit workstation viewport
corresponds @0 the whole square display arca.

The graphics svsiem maintans & stack of composite ransformation matnices. The CTM on top of the
siack, called the current CTH, is initially an identity matrix and is actomatically used in modeling
transformation. Each call to translate, scale, and rotate causes the system fo generaie a corresponding
transformation matrix and 1o reset the current CTM to take inlo account the generated matrix, The order of
ransformsation is maintaied in such a way that the most recently specified tansformation is applied first.
When pushCTMI) iz called, the system makes a copy of the curment CTM and pushes it onto the stack {now
we have two copies of the current CTM on the stack). When popCTMI) is called, the system simphy
removes the CTM on top of the stack (now we have restored the CTM that was second to the removed
CTM to be the carment CTh),

Panning and Zooming

Two simple camera effects can be achieved by changing the posttion or size of the window, When the
position of the window is, for example, moved to the left, an object in the scene that is visible through the
window would appear moved to the right, much like what we see in the viewfinder when we move or pan a
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camera. On the other hand, if we fix the window on an object but reduce or increase its size, the ohject
would appear bigger (2oom in) of smaller (zoom out), respectively.

Double Buffering

Producing an animation sequence by clearing the display screen and constructing the nexi frame of
image often leads to flicker, since an image is erased almost as soon as 1t is completed. An effective
solution to this problem is to have two frame buffers: one holds the image on display while the system
draws a new image into the other. Once the new image is drawn, a call that looks like swapBuffer() would
cause the twoe baffers to switch their roles,

Lookup Table Animation

We can sometimes animate a displayed image in the lookop table representation by changing or
eveling the color values in the lookup table. For example, we may draw the monochromatic object in Fig.
5-14{a) into the frame buffer in several pre-determined locations, using consecutive lookup table entries for
the color artribute in each location (see Fig. 5-15), We initialize lookup table entry 0 with the color of the
object, and all other entries with the background color. This means that in the beginning the object is
vigible only in its first position (labeled 0). Now if we simply reset eniry 0 with the background color and
entry 1 with the object color, we would have the object “moved™ 1o iis second position (labeled 1) withowt
redrawing the image. The objects circular motion could hence be produced by cycling the object color
through all relevant lookup iable entrics.

p N
SN

Fig. 5-15




102

5.1

5.3

TWO-DIMENSIONAL VIEWING AND CLIPPING [CHAR 5
Solved Problems
Lt
5, = min gy g o mm T Dwin
“I'rn'nl. - “'Irnin “":"I— - “:I"Im'm

Express window-to-viewport mapping in the form of a composite transformation matrix.
SOLUTION

0 e, = 0O 0 I 0 —wsm
N 1 B¥mn O 5 D00 1 —wvg,
L[] 1 o0

I o o I

1]
-

P I L & Ny

L e

0o 0 1

Find the normalization transformation that maps & window whose lower keft comer is at {1, 1) and
upper right cormer is at (3, 5) onto (@) a viewport that is the entire normalized device screen and (B
& viewpor that has lower left comer at {1, 0 and upper right corner q’-},i].
SOLUTION

From Prob. 3.1, we need only dentify ihe appropriate paramebers.

(@) The window mirameters ane wig, = |, vy, = 1, wvy, = 1, and wi,,, = 5. The viewpart parameters
A Wy = 0, . = ], gy = 0 and g, = Then 5, = { 5= 1, and

(b} The window parameters are the same a5 in (@), The viewpon parmelers ane MW iy, = b Sy, = 5
Wi = O I--""rl'-l.l-.=£' Then ’:=E-..T._.=£- and

10 -]

MNo= | O * _2

¢ 4 1

Find the complete viewing transformation that maps a window in world coordinates with x extent 1
o I and ¥ extent | to 10 onto & viewport with x extent ; : t.ulam:l_; :utl:ntﬂtni-mnnmmhz:d
device space, and then maps a workstation window with xcxtr.nl 1a:m:l_|. ﬂm:ml m%m the
normalized device space into & workstation viewpor with x extent l to ]n and ¥ I::ttcnt | to 10 on
the physical display device.

SOLUTION

From Prob, 5.1, the parameters for the nommalization ramsformation are wo,, = 1, wx = 10,
Wi = 1y Wiy, = 10, -l.I'IlI].I..I'.“- 1Lt".=i,1}'.1q=ﬂ,md1:|.'m=%.'l'1m
¥, —E— ! x 12 L
I TR I
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5.4

5.5

arud
m R
N=10 §§ -4
o a4 1

The paramesers for the workstation ransformation are wWE, = §. Wi, = Whiae =1, Wi = 1.
and &x = 1, iy, = 1, tg,, = 1, and @y, = 0. Then

and

M 0 =K
W= 0 3 -§
n o 1

The complete viewing transformation V' is

3% 0 -Ey gk o0 L 20 -
v=w-N=| 0 3% -gllo & -L|=[02 -0
o o 1/he o 00 1

Find a normalization ransformation from the window whose lower left cormer is at (0, () and upper
right commer is at (4, 3) onto the normalized device sereen so that aspect ratios are preserved,

SOLUTION

The window aspect metve % g, = ﬂ Umniless otherense mdicated, we shall choose a viewpont that is as large
as possibke with respect to the normalized device screen, To fthis end, we choose the x extent from O to | dnd
the ¥ extent from 0 to . So

4

if = — ==

I
T34 1

As i Profb, 5.2, with parameters wa, =0, wi, =4, Wi, =0 wig, = 3 and exg, =0, e, =1,
W =0, Mgy = E

L=

Find the normalization transformation N which uses the rectangle A(1, 1), 85, 3, Ci4, 53), D0, 3)
as 3 window [Fig. 5-16(a)] and the normalized device screen as a viewpon [Fig. 5-16(5).

SOLUTION

Wi will first rotate the rectangle abowt A a0 that it is aligned with the coondinale axes. MNext, as in Prob.
5.1, we caleulste &, and 5 and finally we compeas the rotation and the iransformaton N (from Prob. 5.1) w
find the required normalization ansfommalion Ny,

The slope of the line segment AF is

-1 1

i=1 z
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0, & i

Fig. 516
Looking af Fig. 5-11, we ses that - will be the direction of the rotation. The angle § is determingd from the
slope of a line (App. 1) by the equation tan ' = §. Then
| i 2 2
m i = mf = = = —] — o —
sip # A urd B gim[ =) 7 cosf .1 cos| =) 7
The rotation matrex abaut A{1, 1] 5 theén {rTLEp 4. Prub. 4.!1-]:

5 % (-3

Roa=]_1 2 (|_L)
35 43
] ] l

The & extent of the rotated window is the length of A5, Similarly, the ¥ extent is the length of AD. Using
the distance formula (App. 1) i calculate these lemgths yields

dA B =P 54 = 30 =20F a4 D=y1E42 =5
Also, the x extemt of the norealized device screen is |, & is the y extent, Calculating s, and =,

. viewporl rextent 1 . vigwpart v extent .:L
Y window ¥ extent 2,8 ¥ window yoextent /%
So
LI R
25 25
N = |;| |. -~ J_
S
] 0 l
The normalization transformation is then
Pomo
Ne=N-Rai=| -} § -}
1] I

56  Let B be the rectangular window whose lower left-hand comer is at L{=3, 1) and upper right-hand

comner 15 af B2, 6). Find the region codes for the endpoints in Fig. 5-17.
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Fig. 5-17
SOLUTION

The region code for point (e p) is set aecording to the scheme

Bit 1 = signiy = Vg, ) = sign(y = &)
Bit 2 = signdy,, — ¥ = gignll — ¥

Here
Sigma) = I
S0
A=, 2 = ()]
=1, Ty — 1K

C{=1, 5) = DONN)
LH3, B} == 1010
E{—2, 3) — 000

Bit } = sign(x = x,., ) = signfx = 2}
Bit 4 = aign(x o, — 1) = sgn{—3 — x)

if a 15 positive
1l otherwise

Fi1, 1) == (000
(1, =2} — D100
H(3, 3} = 0010
(=4, 7) = 1001
J(—2, 10) — 1000
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Clipping against rectangular windows whose sides are aligned with the x and y axes involves
computing intersections with vertical and horizontal lines. Find the intersection of a line segment
PPy [joining Pyixg, vy ) i Pylxs, v )] with (g) the vertical line x = a and (&) the horizontal line
y=#h

SOLUTION
W write the equasion of F,F, in parametric form (App. 1, Prob, Al23)%
=3 - 5.1
[.I' X 4 Hxg =%} Der<l (5.1%
y=y+ e —w (52

(a} Smoex = a, we suhstitute this mio equation (3,1} and find ¢ = (g — 5 )/{x; — 7 L Then, substituting this
value into equation (5.3), we find that the intersection podnt 15 ©; = a and

_ a4 = I _
BEnt [:__‘1 — -"'L}[h »l

(B} Subatituling ¥ = b ndo equation (5.2}, we find 1 = (& — 3, 0700 — %, ) When this is placed into eguation
(5.1}, ihe ndersection peint is ¥ = b and
){1: - '|}

k=
.'|:|-=.1:|+('h ":'
I

Find the clippmg catepories for the Ime segments in Prob. 5.6 (see Fig. 517

SOLUTION
Wi place the bne segments in thear appropnade categones by testing the region codes found in Prob, 5.6,
Cutegory 1 (visible): EF since the region code for both endpaints is D000,
Cintegory 2 (not wisibbe): IF since (1001) AND {1000} = 100 (which is not 0000).

Category 3 (candidstes for clipping): AF since (0001) AND (1000) = 0000, CD since (0000) AND
(1010) = 0000, and GH since (0100} AND (0010) = D000

LUise the Coben—Sutherdand algorithm to clip the line segments in Prob. 5.6 (see Fig. 5-17).
SOLUTION

From Prob. 5.8, the candidates for clipping are AB, T, and GiH.

In clipping AB, the code for 4 is B0 To push the 1 to 0, we clip against the boundary line x.., = =3
The resulting intersoction point is f{—3, 3§). We clip (do not display) AT, and work on {, &, The code for /) is
0000, The clipping category for T E is 3 since (0000) AND (1000) is (0000, Now B is outside the window
(1., s code is D000}, sowe posh the 1 to a0 by clipping againat the line y,, = 6. The resulting imtersection
is fy(=14, 6). Thus .5 is clipped. The code for & is 0000, The resmaining segment 1,1, is displayed since both
endpoints lie in the window (i.e., their codes are 000D).

For clipping T, we start with D since i 15 owtside the window. [is code is 1010, We push the first | toa
by clipping against the line y, = 6. The resalting iersection [ is (|, 6) and its code & 0000. Thus LD &
clipped and the remaining segment CF; has both endpoints coded 0000 and so it is displuyed.

For ciippimg G, we can stari with eifher & or B smce both are outside the window. The oode for G i
0100, and we push the 1 to a 0 by clipping aguinst the line ¥, = 1. The resulting intersection point is
(23, 1), and its code is D010, We clip &/, and work on Jfoff. Segment [F is not displayed since (0010)
AMD {0010 = 0010

Clip line segment CD of Prob. 5.6 by using the midpoint subdivision process.
SOLUTION
The midpoint subdivision process is based on repesied bissctions, To svoid continuing indefinitely, we
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agree to say that & point (). vy ) lies on any of the boandary lines of the rectangle, say, boundany line 5 = ..
for example, iF =TOL < 5, = x5, < TOL, Here TOL 45 a prescribed iolerance, some small number, that is
set before the process begins,

To clip O, we determinge that if is in category 3. For this problem we arbstrarily choose TOL = 0.1, We
find the midpoint of CI0 w0 be M(1, 6.5) lts code is T

S0 M,D is not displayed since {10003 AND (1010) = 1. We further subdivide CM| since (DD}
ANDY (1000) = 0000, The midpoint of CH; 15 W00, 5.75); the code for A, is 0000, Thas E’d‘, is displayed
since both endpoints are 0000 and 353, is a candidate for clipping. The midmintﬂfm i M (05, 6,125),
and is code is 1000, Thus MM is chipped and WGAf, & subdivided The midpoim n[H’{.ﬁ; is
M(0,25, 5,9375), whose code is DM, However, since y; = 59375 lies within the iolerance 0.1 of the
boundary line yo. = &-—that i, 6 — 59375 = (LDG25 «< 0.1, we agree that My lies on the boundary line
Vo = . Thus ﬂLm is displayed and A A i not displayed. So the original line segment CI 15 clipped st
M, and the process slops,

511  Suppose that in an implementation of the Cohen-Sutherland algorithm we choose boundary lines in
the top—bottom-right-lefi onder to clip a line in category 3, draw a picture (o show a worst-case
sCenario, i.e., one that involves the highest number of iterations.

SOLUTION
See Fig. 5-18.

>~ ' f“’

Fig. 518

512 Use the Liang=Barsky algonthm 1o clip the lines in Fig. 5-19.

D3, 1 i1, b
MR-

AL 1,83

Y™ d

JTLL 1)
¥
X
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SOLUTION
For line A8, we have
=0 =10
py =10 gy =-2
F,:—I q,:ﬂ
Pa=4 fa=1

Smee py =0 and g; = =2, AR 15 completely outside the nght boundary,
For line CI), we have

] q=2

F:=D q:=E|

py==3 =3 J'.'-——g
Pa=3 gq =1 J"|='-i|'

Thus w, = max(l), =) = { and w; = min{1, §} = {. Since u; < u;, the two endpoints of the clipped line are
(3, Tyand (3,7 + 3()) = (3, 8),
For bine EF, we have

J:"|.=_E i =1 I"|=—£
P = qp =7 ':='E.
p==l1 q@=1 rn=-{
pa=1 ga =3 Fo=1

Thus uy = max(0, — ¢, -1} =0 and u, =min[l.§,5] = 1. Since &y, = 0 and 1wy = 1, line EF is completely
inside the clipping wimdow,
For Line {&ff, we have

== =3 fL=—§
pr=1 =3 rn=i
m=-3 =4 n=-3
J'-'1-=5 'E|'1-=2 r4={

Thus s; = max{0, —%, =) = O and u; = min(]
line: are {8, &) and {6 -+ 1{?}. 6+ M= (T} 8.
For bine LY, we he

3.8 =1 Since u; < uy, the two endpolnts of the clipped

m==12 g == =i
m=112 g = 10 =i
pi=b g == n=j
py==6 g =1 ==

Thiss gy = man{l), |, — 1) = | and vy = min{1. § 5} = ?, Since u; < uy, the two endpoints of the clipped line
are (=1 + 12000, 7+ (—6W )0 = {1, 6) and (=1 + 1203}, 7 + (—6M i) = (9,2}

How can we determine whether a point Ax, ) lies to the left or to the right of a line segment
Joining the points A(x,, »,) and B{x;. y3)7
SOLUTION

Refer o Fig. 5-20. Form the vectors AB and AP, I the point P is to the left of AB, then by the definition
of the croas prodwct of two vectors (App. 23 the vector AB x AP points i the direction of the vector K
perpendicular to the xy plane (sse Fig. 5200 If it Lies to the mght, the eross product points in the divection
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5.14

515

516

—~K. Now
AB = xy — ol + vy — M AP = (x —x )l 4 (v =y W
So
AB = AP = [{x; = x My =1 ) = [y =¥ Hx = 5 }K
Then the dimection of this cress product i determined by the oumber
€= =)y =p)= =y lx=x)
If C is positive, P lies 1o the left of AB. If € is negative, then P lies to the right of AB,

ﬂiﬂf

Fig. 5-20

Draw a fowchart illustrating the logic of the Sutherland-Hodgman algorith.
SOLUTION

The alponthm inpnits the vertices of a polypon one at a timeé. For each mput verex, sither zero, ane, ar
e autpul vertices will be pererated depending on the relationship of the mgart vertices to the clipping edge
E.

W denode by P the input vertex, § the previous input venex, and F the first arriving inguat verlex. The
veriex oF verisoes 1o be putpal are determined acoording to the logie ilustrated in the fowchart in Fig, 5-21,
Recall that a polygon with w vertices P, Py, ..., P, has nedges FLF;. ..., Fo P, and the edge FL P, chosmg
the polygom. In order to aveid the nesd wo duplicate the input of P, as the finsl mput vertex {and a8
coresponding mechaniem to duplicae the final output vertex to cloas the polypon), the cloging kogic shown in
ke fosvchiart in Fig, 5-22 iz called after processing the final input verex /.

Clip the polygon Fy.....Fy m Fig. 523 aganst the window ASCD using the Sutherland-
Howdgman algorithm,

SOLUTION

Ar each stage the new outpul polvgon, whose vertioes are deterrmped by applying the Suiherlamd—
Hodgman algorithm {Prob. 5. 14), is passed on 1w the pex clipping edge of the window A8, The results are
illustraded in Figs. 5-24 through 5-27.

Clip the polygon Py, ..., Py m Fig. 5-10 aganst the rectangular chipping window using the
Sutherland-Hodgman algorithm.
SOLUTION

We first clip against the top boundary line, then the left, and finally the bottom. The Aght boundary =
oamitted since it does not affect any verbex list, The intermediate and final resalis are in Fig, 5-28.
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517

518

A I
I |
LY
__ /e el __
i
Ot [ Py Py
vertex Py Py
_— Fa
Fy [
( Edt ) | P, |
i |
Fig. 512
2u

BA QG @B
Fig. 5-24 Clip against AR, Fig. 525 Clip against BC.

Use the Weiler-Atherton algorithm to clip the polygon in Fig. 5-2%a).
SOLUTION
See Fig. 5-20(b) and ().

Consider the example in Sect. 5.5, where the object would appear turning slowly around its center
even if we set Ax = 0. How to koep the orientation of the object constant while making it motate
around the center of the display arca?
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R|L
I
|'.|'“ Ti T.'ﬁ
s b R Ty
L
5- T|
5 N
I
54 5 5 I
Flg. 5-k6 Clip apains co. Fig. 5-17 Clip against D4,
iR R 5 5
T TN TN
g. 3 3
@, R R, ‘ a, 5
; ! i
1T I 5s 'rl'l
2 @ B4R
Clip agaems Clip zzainst Llip against
top boundary butsttionm boundary
Fig. 5-2K
Subject
paliges
Clip
palygon
(&} i 5]
Fig. 5-19
SOLUTION

Ax = -Af, ie., 3= -f.

519 How 1o animate the flag in Fig. 5-30{z) that may be in two different positions using lookup table
animation?

SOLUTION

See Fig. 5-30{). The arca where position 1 overlaps position 2 is assigned entry O that has the color of
thiz flag. The rest of posithon 1 i= assigned entry | and that of position 2 entry 2. Now we onby nesd to albemate
entries | and 2 between the flag color and the background cokor.
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Fig. 530

Supplementary Problems

520 Find the workstation transformation that maps the normalized device screen onte 8 physical device whose x
extent is 0 io 199 and y extent is 0 10 639 where the onigin is located at the {a) lower beft comer and (&) upper
beft commer of the device.

521 Show that for 3 viewing transformation, 5, = 5, if asd only if a, = a,, where 4, is the aspect ratio of the
window and o, the aspect ratio of the viewpar,

522  Find the normabization transformation which s a circle of radiias five unis and cenber {1, 1) a8 a windiw
and 4 gircde of radius | and center (5, 1) as & viewport

523 Descnbe how clipping a hine against a circelar window (o1 viewport) might procesd. Refer to Fig. 5-31.

| |
i Rk + 7,k + 7

FEge Sy — —

| Lih = 7, & = 1) I
| !

Fig. 5-31

524  Use the Suihertand—Hodgrman algosithm so clip the line segmem joming F(—1, 2) o P36, 4) agamst the
rstated window in Prob, 5.5.



CHAPTER 6

Three-Dimensional
Transformations

Manipulation, viewing, and construction of three-dimensional graphic images requires the use of three-
dimensionsl geometric and coordinate transformations. These transformations are formed by composing
the basie fransformations of translation, scaling, and rotation. Each of these transformations can be
represented ;s a matrix transformation. This permits more complex transformations to be built up by use of
miatrix muliplication or concatenation,

Az with two-dimensional fransformations, two complementary points of view are adopted: either the
object & manipulated directly through the use of geometnc fransformations, or the object remains
stationary and the viewer’s coordinate system 15 changed by using coordinate transformations. In addition,
the consiruction of complex objects and scenes is facilitated by the use of instance transformations. The
compeepis and rransformations introduced here are direct generalizations of those introduced in Chap. 4 for
Pen-dimension:.| transformations.

61 GEOMETRIC TRANSFORMATIONS

With respect 1o some three-dimensional coordinate system, an object OB/ iz considered as a set of
[oints:

Obj = [P(x, . z)}
If the abject i= moved to a new position, we can regard it as a new object Obf', all of whose coordinate

poimts e 3 %) can be obtained from the original coordinate points Pix, v, ) of Obf through the
apphication of & geometric transformation,

Translation
An abject 18 displaced a given distance and direction from its original position, The direction and
d#mm of the translation is prescribed by a vector

V=gl + &1 +cK

114
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The new coordinates of a translated point can be calculated by using the transformation

F=x+a
T4V =v+b
f=z4c

{see Fig. 6-1). In order to represent this transformation a5 a matrix transformation, we need to use
homogeneous coordinates (App. 2). The required homogenesus matrix transformation can then be
expressed as

—
= —
=~ ]
=N B
— Iy e M

My o

Fig. 6-1

Scaling

The process of scaling changes the dimensions of an object. The scale factor 5 defermines whether the
gcaling is a magnification, s = 1, or a reduction, 5 < 1.
Ecaling with respect o the origin, where the origin remains fixed, is effected by the transformation

XF=8x
'51 :.1I: ."Ir=3_|.'-

ady

B e

=5=_-

5 0
S.J.JI..J = ] ‘i_r
oo
Rotation

Rotation in three dimensions 15 considerably more complex than rotation i two dimensions. In two
dimensions, a rotation is prescribed by an angle of rotafion @ and @ center of rotation P. Three-dimensional
rotations require the prescriptioin of an angle of rotation and an axis of rotation. The canomnical rotations
are defined when one of the positive x, y, or 7 coordinate axes is chosen as the awis of rotation. Then the

In matrx form thiz is

S ]
e S
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construction of the rotation ransformaton proceeds just like that of 4 rotation in two dimensions about the
origin (see Fig. 6-2).

Koration about the © Axis

From Chap. 4 we know that

¥ = xsind + yoosi

¥ =xcostf — ysinf
Rﬂ_l{:
¥ =x

Rotation about the y Axfs
An anabogous derivation leads fo

= xcosfl 4 zsnd
Ryyi¥=¥
= —xginfl + zcos i}

Romfion about the v Axix
Similarly:
¥=x
¥ = yeos ! — s il
I =ypsmb 4 zoosl

Ay

Note that the direction of a positive angle of rotation s chosen in accordance o the right-hand rale with
respect to fhe axis of rotation (App. 2).
The comesponding matnx transformations ane

cosfl —gin® 0

Rag =1 sinf!  costt 0
0 ] 1
cosll 0 sind

Ray=] 0 1 @
—ginll 0 cosd
I 0 ]

Byy=10 cosfl —sint

b =nf  cosd
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The gencral wse of rotation about an axis L can be built up from these canonical rotations using matrix
maltiplication (Prob. 6.3)

6.2 CODORDINATE TRANSFORMATIONS

We can also achieve the effects of translation, scaling, and rotation by moving the observer who views
the object and by keeping the objoct stationary. This tvpe of transformation is called a coordinarte

o

Fig. 6-3

transiormation. We first attach a coordinate system to the observer and then move the observer and the
attached coordinate system. Next, we recalculate the coondinates of the observed object with respect to this
new observer coordinate system, The new coordinate values will be exactly the same as if the observer had
remained stationary and the object had moved, comresponding 1o a geometric transformation (see Fig. 6-3).

If the displacement of the observer coordinate svstem fo a new position is prescnbed by a vector
¥ = al 4 bJ 4 cK. a pomt Pix, v, z) In the ongmal coordimate system has coordmates Ay, v, =) i the
new coordinate system, and

~ .I:"=.t—.|:.|
N{¥=y—=~0
f=r=g¢
The dervation of this transformation 15 completely analogous to that of the two-dimensional transforma-

tion (see Chap. 4).
Similar derivations hold for coprdinate scaling and coordinate rotation transformations,
As in the two-dimensiopal case, we summarize the relationships between the matnix forms of the
coordinate transformations and the geometens transformations:
Coordinate T!‘In!fl]-l"[ﬂlﬂﬂ:ll Geomeirie Transformations

Tm]m I:I.' T_l||r
Raotation Ry R_s
S'ca““-g S:..:,.:r Sl.f:'..l.l':,.l_l':_,

Inwerse geometric and coordinate transformations are construcied by performing the reverse operation,
Thus, for coprdinate ransformations (and similasky for geometric transformations)

T'r-l =T, E:T] - R—I] S::.!:,.:, = SI.-],.I.H_,.IH,

6.3 COMPOSITE TRANSFORMATIONS

More complex geometric and coordinate transformations are formed through the process of
compasition of fumctions. For matnix funchons, however, the process of composition s equivalent to
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matrix multiplication or concatenation. In Probs. 6.2, 6.3, 6.5, and 6.13, the following transformations are
consirucied:

l. iy = alignmg a vector ¥ with a vector N.
2. Ry, = rotation about an axis L. This axis is prescribed by giving a direction vector V and a point
F through which the axis passes.

3. 8 ;s .p = scaling with respect to an arbitrary point P.

In order to build these more complex fransformations through matrix concatenation, we must be able
o multiply translation matrices with rotstion and scaling matrices. This necessitates the use of
homogeneous coordinates and 4 x« 4 matrices (App. 2). The standard 3 « 3 matnices of rofadon and
scalmg can be represented as 4 x 4 homogeneous matrices by adjoining an extra row and column as
fiollows:

a & ¢ 0
d e 0
g R I 0
0 o o1

These transformations are then applied to points Plx, », z) having the homogeneous form:

= by e R

EXAMPLE 1. The msirix of mdation about the ¥ axis has the homogeneous 4 x 4 form:

cosfl 0O sm& O
R .= o1 0 0
B3 —ginfl O cosd O
o 0 0 1

6.4 INSTANCE TRANSFORMATIONS

If an object is created and described in coordinates with respect o its own object coordinate space, we
can place an instance or copy of it within a larger scene that is described in an independent coordinate
space by the nse of three-dimensional coordinate iransformations. In this case, the tmnsformations are
referred to 85 instance trangformaiions. The concepts and constroction of three-dimensional instance
transformations and the composite ransformation matrix are completely analogous o the two-dimensional
cases described in Chap, 4.

Solved Problems

6.1  Define tilting as a rotation about the x axis followed by a rotation about the v axis: {a) find the tilting
mairi; (b} does the order of performing the rotation matter?
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SOLUTION
{al  We can find the reguired ransformation T by composing (concatenating) twe rotation mafrces:
T'=~Rg 3-8 1

cosfl O sintl, 0% /1 0 B0
! 1 0 00 cosf, —snd, 0
B —smi! & cosd O O sinl, cosl, O
Lo o o 1/l o 01
cos, sind, sind, sind,cosd, 0
0 cos i, —5im i, ]
| -sin fl, cosd sinfl, cosé cosd, 0

0 0 0 I

(&) We multiphy &5 ;- Ry ) to obizin the matrix
e i, 0 sin fi, ]
sinf sinfl,  cosd, —sinf cosfl, 0
—cosfl, sinl smd,  cosf, cosf, O

'II 0 0 |

This iz not the same matrix as in part o thas the order of rolation meatiers,

6.2  Find a ransformation Ay which aligns a given vector ¥ with the vector K along the positive = axis.
SOLUTION

e Fug. 6=Hi), Let ¥V = gl + &) + oK. We perfonm the alignmen through the follovang sequence of
tramsformations [Figs. G-Hb) and 6-2(c)]:

[. Ritate abowt the x axis by an angle &) so that V' rotates ivo the upper half of the x= plane (a5 the vector
¥k

2. Rotate the vector W, about the v axis by an angle =& so that ¥, rofates to the positive = axis (a5 the
vector ¥yl

Implementing step | from Fig. 6-4b), we observe that the required angle of motation ) can be found by
looking ar the projection of ¥ onto the = plane. (We assume thet & and ¢ anse pot both zero.) From triangle

OF 8
b £
sin i) = ) cosfl = - g
The required rotabon i
1 L L] 0
0 £ b
VB e W
Rl'l..l = 5 .
0 — ——— 1
YE+E SRS
L] 1] L] |

Applying this rodation b the vector % prodeces the vector Y, with the components. (g, 0, -..."E + F].
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Implementing step 2 from Fig, 6~3ch, we s that a rotation of =0, degrees is requined, and so from
triangle (L

. . a JE T
sin(—f,) m —sinf, R i« e and  cos(—f;) = cosf, = s
Then
((VFEE
Vat 4 b+ T
P 1] 1 1] ]
L :
e a ) e
Vel B+ ot + 04
X 0 0 0 1
Since [¥] = /&' + b + &, and introducing the notation £ = B + 2, we find
Ay =R g3 Ry .y
(4 -ab —ac )
VA V)
o £ P
= F A
a b £
= = I
LA L L
|ku 0 0 1)

If both b and ¢ are zero, then ¥ = ol, and 50 4 = 0. In this case, only a £90° rotation about the v axis
is requirsd. S0 if 4 = 0, it follows that

L] 0

1 o 0
L9 0 o
]
& o 0 1

In the same manner we caleulnte the imverse transformation that aligns the vecior K with the vector ¥

.-'I.._-I = {R—H.J '-Rfi..I] . H"'_ul.l HI:-;':.J' = R a1 Koo
A 5 T g)
¥ V]
—ab o b 0
| AV] 4 |V
—ac _boe o
AV AV

Lo 0 o uf

63  Let an axis of rotation L be specified by a direction vector ¥ and a location pomt P, Find the
transformation for a rotation of & about L. Refer wo Fig. 6-5.
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Fig. 65 Fig. f-6

SOLUTION
Wi can find the required transformation by the following steps:
Translate 1o the m'igin.
Algn ¥ with the vector B
Rotate by F about K.
Reverse steps X and 1.

£ =

Bo
Roy = T-JE ¥ -Ryp Ay Top

Here, A, is the transformation described in Prob. 6.2,

The pyramid defined by the coordinates A0, 0, 00, B(L, 0, 09, 00, 1,0), and D0, 0, 1} is rotated
45% about the line L that has the direction ¥V = J + K and passing through point C(0, 1, 0) (Fig.
6-6). Find the coordinates of the rotated figure,

SOLUTION

From Prob. 6.3, the rotation mainx & ; can ke found by concatenating the muatrices
Ry =Th Ay Ry -dy-Top

With £ = (), 1, 0}, then

1 0@ 0
o1 0 -1
r—”‘ncwu
D0 1
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Mow V = J+ K So from Prob. 62 witha=0, 4= 1, ¢ = |, we find i = I, V] = +Z, and

1 0 @ 0 10 0o
1 -l 11
0 = —& 0 0 . 0
G y W2 W2
_.f‘_.= "'!1.'=
0 4 D o =L Lo
VI Wi V1 W2
00 0 1 o0 0 1
Alsay
F1 =l
A 100
11 010 1
,=__I:I':F T]=
Rase S =1 -
o 1
¢ ¢ 00 1
o 0 01
Ther
(va 11 1)
2 2 2 2
1 2442 1-47 2-42
Rey =] 2 3 4 4
b 2=4T 2447 Ji-2
2 4 4
Lo 0 0 .,

Te find the coordinates of the rotated figure, we apply the rotstion matrix B ; to the matrix of homogeneous
cnardinates of the vestices 4, B, C, and I

1 a0
¢ 010
C=MBCOV=\ 0 o 0 1
1111
%0
[ 1 1+ s 1 )
2 2
-7 4-.3 | 2-.3
.ﬂ'g]'_'lf: g -‘1- 2
W2-2 J21-4 2
[ i 2

The rotated coordinates are (Fig. 6=7)

1 2=402 Ji=1

,u-=(]+2"'5,""4"§."§¢“') H:(Lz"zﬂ.‘;—ﬁ)
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6.6
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Fig. 6-7

Find a transformation 4y  which aligns a vector V with a vector M.
SOLUTION
We form the transformation in twe steps. Finst, align ¥V with vector K, and second, align vector K with
vector N, 5o foom Prob, 6.2,
Ay = Az Ay

Referring b Prob. 6,12, we could also get Ay o by rofating V towands N about the axis ¥ = N,

Find the transformation for mirror reflection with respect to the 1 plane.
SOLUTION

From Fig. 6-8, it is casy 0 see that the reflection of Pix, v. 1) i8 F{x. p, =z} The transformation that
performs this reflaction is
I O 0
M=0 1 i

o0 -1

Find the transformation for mirror reflection with respect to a given plane. Refer o Fie. 6-9.
SOLUTION

Let the plane of reflection be specified by a normal vector W and a reference point Fglag, ¥ %) To
reduce the reflection to a mirror reflection with respect o the xy plane:

Transkste Py to the origin:
Align the nommal vector ™M with the vector K normal o the xy plane.
Peclorm the mimor reflectbon in the s plane (Probk. 8.6),

. Reverse steps | and 2,
Sap, with translabion vector V = —xl — ypd — K

fo e R

Myp =Ty' Ay’ -M Ay Ty

Here, Ay 15 the abgnment mainx defined in Prob. 6.2 5o if the vector N = a1 + ryd 4 ny K, then from Prob,



CHAF 8] THREE-DIMEMSIONAL TRANSFORMATIONS 125

In sdditiom

100 -5 1 00 x
010 -y oo g
Welo o1 —| ™ ™ =loo1y
oo a0 1 o0 o0 1
Finally, from Prob, 6.6, the homogeneous form of M 15
I o o0
for oo
H_ﬂﬂ'—IU
oo |

6.8  Find the matrix for mirror reflection with respect to the plane passing through the origin and having
# normal vector whose direction s N =1+ J + K.

Copyrighted material
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6.9

6,10

6.2

THREE-DIMENSIONAL TRANSFORMATIONS [CHAR &
SOLUTION
From Prob. 6.7, with £,{0, 0, 0} and N =1+ J + K. we find |N] = /3 and & = 4. Then
1 00 O 1 o 0 0
o1 a0 0 1t 0o
Ty = (¥ =00 + ) + 0K} T =
oo 1 o o 1 0
o001 0001
F2 - -0 f w2 o Lo
S Y S Wi o3
0 L __I i __] L L i
.rh.,— 'lul'li -E .|'1||:= "«l'l'i'q"l.i 'lul'l'i "l'l'i
LI N ) e
Vi3 ¥3 VI3 2 S
Lo 0 a1/ L6 o0 0 1/
ansl
1 i o 0
o1 0o
M=1a 0 -1 0
(1 |

The reflection matnx 15

Supplementary Problems

Align the vecior ¥V =1+ J + K with the vectior K.
Find a transformation which aligns the vector ¥V =1 <+ J 4+ K with the vector N =21 =1 = K

Show that the alignment transformation satisfies the relstion 4! = A7,

Shorw that the alignment transfortnation dy s 3 equivalent o a rotation of & aboul an axiz having the

divection of the vector ¥« N and passing through the arigin (see Fig. 6-10). Here 0 is the angle berwesen
vectors W oand M.
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M
Yam
A%
Y
~
~
. []
. ~
Y
Fig. 6-10

613 How can scalmg with respect to a point Pylxg, ;. %) be defined in tesms of scaling with respect 1o the origin?



Mathematics of
Projection

MNeedless 1 zay, there are fundamental differences between the rue three-dimensional world and its
pletonial description. For cenfuries, artisiz, engineers, designers, drafters, and architects have tried to come
fox tepims wilh the difficulties and constraints imposed by the problem of representing a three-dimensional
obpect or seenc in a two-dimensional medium—ithe problem of projection. The implementers of a compater
graphics system face the same challenge.

Projection can be defined as a mapping of point P (x, y, ) onto its image # (x', ¥/, 2) in the projection
plane of wew plane, which constitutes the display surface (see Fig. 7-1). The mapping is determined by a
projection lime called the peofector that passes through P and infersects the view plane. The miersection
point is P,

Projectionview JFixnz)
plane
Frojocior

o', wez

L

Fig. 7-1 The problem of projection,

The result of projeciing an object is dependent on the spatial relationship among the projectors that
project the pomis on the object, and the spatial relationship between the projectors and the view plane (see
Sec. 71} An imporiant observation is that projection preserves lines. That is, the line joining the projected
images of the endpoints of the original line is the same as the projection of that line.

The twn basic methods of projection—perspective and parallel—are designed o solve the basic but
mutually exclrsive problems of pictorial representation: showing an object as it appears and preserving its

128
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true size and shape. We characterize each method and introduce the mathematical descoption of the
projection process in Sec. 7.2 and 7.3, respectively.

7.1 TAXONOMY OF PROJECTION

We can construct different projections according 1o the view that is desired.

Figure 7-1 provides a taxononry of the families of perspective and parallel propections. Some
projecions have names—cavalier, cabinel, isometric, and so on. Other projections qualify the main
type of projection—aone principal vanizhing-point perspective, and so forth.

Projections

[
Perspective Parslie
|G Teet g PO (il el pured echiord]

S TN -~

Cirthagraphi: 1
Ume point Twg point  Theee point Obillqne

EpAvaphrors. perpeerid o bad (OO IaTE PRl erpefal o1 ki
L] (U Vs i plane) o vicw plax)
vanshing vanshing vEnskrg
et} ] ] Aubtlview A womnmetric General
e plie Iy b _..-""' \\
pandkl o mol paral i i
F'l"I'I'F"F:'IF F'"“El'l'l Cavalier  Cabinet

/TN

lsnmers  Dimetrs:  Trmeng

Fig. 7-2 Taxonomty of projection.

7.2 PERSPECTIVE PROJECTION
Basic Principles

The techniques of perspective projection are generalizations of the prnciples used by artists im
preparing perspective drawings of three-dimensional objects and scenes, The eve of the artist is placed at
the center of projection, and the canvas, or more precisely the plane contaiming the canvas, becomes the
view plane. An image point is determined by a projector that goes from an object point to the center of
projection (see Fig. 7-3).

Perspective drawings are characterized by perspective foreshortening and vanishing points. Perspeciive
Joreshorfening is the illusion that objects and lengths appear smaller as their distance from the center of
projection imcreases. The illusion that cedain sels of paralle] lines appear to mest at a point 15 another
feature of perspective drawings. These points are called vanishing points. Principal vanishing points are
formed by the apparent intersection of lines parallel to one of the three principal x, v, or 7 axes. The number
of principal vanishing points is determined by the number of principal axes intersected by the view plane
(Prop. 7.7}

Mathematical Description of a Perspective Projection

A perspective transformation 15 determined by preseribing a center of projection and & view plane. The
view plane is determined by its wew reference point By and vew plane normal N. The object point P is
located in world coordinates at (x, y, z). The problem i8 to determine the image poimt coordinates
P, ¥.7) (see Fig. 7-3).
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- .
o
Aix, 0, x)
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Fig. T-3 Fig. 7-4

EXAMPLE 1. The standard perspective projection is shown i Fig. 7-4, Here, the view plane is the xy plane, and
the cender nf[mmhm 1% taken as 1he puinl: L, O, —.'Jr] an the nq_utivv: £ A%
Lising srmilar tripngles ABC and A0, we find

_dx Cdy

R L =
Yarm V=35 ¥=0

The perspective tmnsfoomation beteesn object and image pomit 15 nonlinear and 50 cannat be represented as a
3 = 3 matnx trensformaton. However, if we use homogencous coondmates, the perspective tmmsformaton can be
represented as a 4 x4 madrio;

x d-x d 00 0 x
AN ED: 0 4 0 0y
- L] B z
1 z4d g o1 & 1

The general fomm of a perspective ransformation & developed m Prob. 7.5,

Perspective Anomalies

The process of constructing a perspective view introduces certain anomalies which enhance realism in
terms of depth cues but also distort actueal sizes and shapes.

1. Perspective foreshorfening. The farther an obqject is from the center of projection, the smaller it
appears (Le. its projected size becomes smaller). Refer o Fig, 7-5.
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View plane
Fi

B
Cm, 0, ~d) A t

PMote: Sphere B is 2 | timea the s of

wphuere A, yet both spherea sppear to be the
same sire when propcisd onto the view pline

Fig. 7-5

2, Fanithing points, Projections of lines that are not parallel to the view plane (ie. linos that are not
perpendicular to the view plane normal) appear 1o meet at some point on the view plane. A
common manifestation of this anomaly is the llusion that railread twacks meet af & point on the
hivranm,

EXAMPLE 2. For the standard perspective projection, the projections L} and L of paralle] lines L, and L, having
thie direction of the vector K appear to meet al the origin (Prob. 7.8). Refer to Fig. 7-6.

Fig. 76 Fig. 7-7

3. Fiew confusion. Qbjects behind the center of projection are projected wpside down and backward
onto the view plane, Refer 1o Fig. 7-7.

4, Topological distortion, Congider the plane that passes through the center of projection and is
parallel to the view plane. The points of this plane are projected to infinity by the perspective
transformation. In particular, a fintte line segment joining a point which lies in front of the viewer
to & point in back of the viewer is actually projected to a broken line of infinite extent (Prob. 7.2)
(see Fig. T-8)
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Pl
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Fig. 7-

7.3 PARALLEL PROJECTION

Basic Principles

Paralle! projection methods are used by drafters and engineers to create working drawings of an object
which preserves its scale and shape. The complete representation of these details often requires two or
more views (propections) of the object onfo different view planes.

In parallel projection, image points are found as the intersection of the view plane with a projector
drawn frem the object peint and having a fixed direction (sce Fig. 7-9). The direction of projection is the
prescribed direction for all projectors, Orthographic projections are characterized by the fact that the
direction of projection is perpendicular o the view plane. When the direction of projection is parallel 1o
any of the principal axes, this produces the front, top, and side views of mechanical drawings (also referred
to as multiview drawings). Avonometric profections are orthographic projections in which the direction of
projection is not paralle] to any of the three principal axes. Nonorthograhic parallel projections are called
obligue parallel profections, Further subcategonies of these main types of parallel projection are described
in the problems. (See alse Fig, 7-10,)

Mathematical Description of a Parallel Projection

A pevallel projective fransformation 15 determined by prescribing o direction of projection veckor 'V
and a view plane. The view plane is specified by 1ts view plane reference point By, and view plane normal
M. The object point P is located af (x, v, 2) 1 world coordinates. The problem iz to determine the image
poant coordinates Py, 3, ) See Fig, 7-9.
If the prigection vector ¥ has the direction of the view plane normal N, the projection 15 sad o be
orthograpiic. Otherwise it is called obfigue (see Fig. 7-10)
Some common subcategones of omthographic projechions ane:
. Isometric—the direction of projection makes equal angles with all of the three principal axes
(Prob. 7.14).

2.  Dimetric—the direction of projection makes equal angles with exactly two of the principal axes
{Prob. 7.15).

3. Trimeric—the direction of projection makes unequal angles with the three principal axes,
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Fig. 7-9 Fig. 7-10

Some common subcategories of oblique projections are:

1. Cavalier—the direction of projection is chosen so that there is no foreshortening of lines
perpendicular to the ©y plane (Prob. 7.13)

2. Cabinet—the direction of projection is chosen so that lines perpendicular to the xy planes are
foreshortened by half their lengths (Prob. 7.13).

EXAMPLE 3. For orthographic projection onto the xy plane, from Fig. 7-11 it is easy 1o see that
¥=x
Farg: { ¥ =y
=0

The matrix form of Pary is

FParg =

[=T =T~ ]

]
]
1]
1

===
= — ]

The general parallel projective transformation is derived in Prob. 7.11.

Solved Problems

7.1 The unit cube (Fig. 7-12) is projected onto the xy plane. Node the position of the x, v, and = axes.
Draw the projected image using the standard perspective transformation with {a) @ = 1| and (#)
d = 10, where d s distance from the view plane.
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Fig. 7-11

SOLUTION
We represent the unit cube in ferms of the homogeneous coordinates of its vertices:

L= = =]
—
_—— D
el —

|
I
i
1

_0 o =
I — ]
Ll = ]

-

Fig. 7-12

Copyrighted material
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From Example | the stardard perspective matnx 15

(a}

(b}

Hery ==

=
oo o, o

=
-

With & = 1, the projected coordinates are found by applying the matns Perg o the matrix of coordinates
V. Then

I 1
¢ 1
LI
1t

If these homogensons coordinates are changed w0 three-dimensional coordinstes, the projected
image hos coordinates:

) e

q
Perg -V = ?

A =000 E=(0}0
B =(1.0,0) Fo= (0,0, )
O o=00,0.0 G =L, 0,00
¥ =0, 1.0 H:ﬂl-é.ﬂ'

We draw the projecied mage by preserving the adge commestions of the original object (se: Fig. 7-
13), [Mate the vamishing point 2t (0, 0, 0).]
With o = M}, the T:crq'u:i:li.'l.'l: mEln® %

(L] oo 0
Do o
Fex=1 0 00 o
] o1 14
Then
O 10 W o0 0 0 10 10

LIS {1 L TN/ A 11
0 0 & 0 a0 0 0
i 1w @ 1 111 11 11

is the matnx image coordinabes in homogeneous form. The projected image coordinates sre then

PI:'TH"I"—

AT =, 0,0 E' w= (0,47, 0)
F=(L00 F={000

C=01.0 & =({o00
=10  H=(Fm

Mate the different perspecinves ol the face EFTH in Figs, 7-13 ] T-14, [Tn a viewer .ﬂ.ﬂ.l:ﬂ.lil]‘ at the
center of projection {0, 0, =), this face i3 the back foce of the unit cube,]

Under the stamdard perspective iransformation Pery, wheat 18 the projected image of (g} a point in
the plan¢ r = —d and (b) the line segment joining Py(-1, 1, ~2d) to Py(2, -2, 0)? {See Fig. 7-15.)

SOLUTION

(a}

i

The plane r = —d is the plane parallel to the 1 view plane and located af the center of projection
C{0, 0, =d). i P(x, v, =d) s amy point in this plane, the line of projection CF does not indersect the xy
vigw plane. We then say that I is prodected out to infimity (o)

The line PP, passes through the plane = = —d, Writing the equation of the line (App. 2), we have

x==1+M} y=1=H F==2d + kit
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Wesccthatat? m {ix e Ly= — | andz = —d. These are the coondinates of the intersection point J,
We now describe the perspective projection of this line segmert
Applying the standard projection to the equation of the hine, v find

d 000 -1+ 3 —d + 3ot
hd 0 0 | — 3 A
00 0 0| —2d42de | 0

L LR I | 1 —d + 2t

Changing fram homogensous 1o three-dimensional coondinstes, the egustions of the projecied line
segment are

LomdE3d_ b d-3d 13
Sdez —dvm YT Sdei 1+

(In App. 1, Prob. A112, # is shown that fhis is the equation of a line,) When ¢ = [0, then x = | and
¥ = =1, These are the coordinates of the projection P of point ). When ¢ = 1, it follows that x = 2 and
¥ = =12 (the coordinates of the projection P of point Py). However, when 1 = 3, the denominator is 0.
Thus this line segment “passes" through the poeiot af infinity in joinimg M{1, = 1) to P52, =2}, In other
words, when a line segment prining endpoints P, and P, passes through the plane containing the center
of projection snd which i parallel to the view plane, the projection of this line segment is mod the simple
line segement joining the projected endpoints P and P, (See also Prob. AL 13 in App. 1)

73 Using the ongin as the center of projection, derive the perspective transformanon onto the plane
passing through the pomt By, ¥y, 25) and having the normal vector N = o J + n = ngK.

SOLUTION

Let Pix. y.z) be projecied onto P{x’, ¥, £'). From Fig. 7-16, the vectors PO and PO have the same
direction. Thus there is a number 2 50 that PO = 2P0, Comparing components, we have

Y=z VY=g T=a

T4 Mo ml + m &k

Fig. 7-16
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We now find the value of 2, Since any point #(x', ¥/, 2) lving on the plane satisfies the equation {App. Z)
i e s =
{whee afy = myxy & Agry + sy ), substituteon of ¥ = ar, V' = o, and ©° = @z mio this equation gives
iy
z = —
TR 0 I o O

This projection transformation cannoi be represented 25 a 3 » 3 matrix transformation. However, by
uging the homogensoas coordinate representstion for three-dimensional points, we can write the projection
transformation ag a 4 x 4 matrix:

d 0 00
9 4 0 D
Persg, = | {I:du{!
.H||IT_=.IT||'|}

Application of this matrix to the homogenesos represemtation P(x, w. 2, 1) of points P gives Py, gy,
dy2, 1%+ may + w2l which is the homogeneous representation of P2, ', 2} found above.

Find the perspective projection onto the view plane z = J where the center of projection is the
ongin {0, 0, 0.

SOLUTION

The plane z = 4 15 paralle] to the 1y plane (and & units sway from it). Thes the view plane normal vector
N iz the same s the normal vector K to the oy plane, that is, N = K. Choosing the view reference point as
R0, @, i, then from Prob. 7.3, we identify the parameters

MRy, By mg) =00,0, 1) Balxg, ¥ 2o} = (0,0, 4}
S0
dy = My Ty F Ay ey =d
and then the propecion matts is

[=R=N=1-1
=R -
-5
oo a S

Denve the general perspective transformation onio a plane with reference point Byixg, ¥, Zol,
nommal vector N = I 4 nJ 4 n; K, and using Cla, b, ) as the center of projection. Refer to Fig.
F-17,
SOLUTION
As in Prob, 7.3, we can conclode that the vectars PC ond PC satisfy (see Fig. 7+17) FC = oPC. Then
f=alx —a)l+a ¥o=ualy -+ b =z -+
Alsa, we find {by using the equation of the view plane) that

d
! =n,[:—a]+n;[v—h!+n1[z—:j

[Le. P, v.20 15 on the view plane and thus satsfies the view plane egquation wylx" — 1) +
ay(y = Vg b 4 malz" = zp) = 0. Here, d = (mx; & mypy 4+ m35g) = (ma + ngb + myed,

From App. 2, Prob, A2.13, o is proportional to the distance O from the view plane to the center of
propection, fhat is, d = 3N
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We=ml+wJ+mK

[

Rl % Sob

P, v, E)

Fig. 7-17

Ter find the bomogenesus coordinale matrix representation, it is casiest o proceed as follows:
1. Translate so that the center of projection O lies af the origin Mow B = (5 —a ¥5— b, 25 — ¢}
becomes the reference point of the translated plane (the normal vector is unchanged by translation).

2. Prject omio the translated plane using the angin as the center of projecton by constructmg the
trunsformation Pery g (Proh. 7.3).

3. Translate back.
Introducing the intermediate guantifes
dy = w4+ Ry amnd ) = ma + nyh o+ e

we oblain & = oy — d,, and 50 Pery g o = T - Perg g - T Then with R, used as the reference paint in
constructing the projeciion F_-.;_f..

fl 0 0 a d 0B 0O 0 I 00 =a
P . O 1 0 & 6 4 0O 0 O 1 0 =k
ATl et efle 0 4 0fflo 01 -
Voo @ 1 R, my my 0 o o o 1

fd4any o, ang;  —ady

- iy d + iy vy — bl

- oy oy d4omy  —ody

Vo #y Ry —dy

T.h Find the (¢} vanishing poinis for a given perspective transformation in the direction given by a
vector U and (5) poncipal vanishing points.
SOLUTION

) The family of (parallel} lines having the direction of U = o1 + wed 4+ 1K can be wririen in parameine
form as

r=uf+p y=upl+ g r=ayldr
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where F{g, g, ) 15 any poinl (see App. 2). Applicaiion of the perspecinee tmnsformation (Prab, 7.5) to
the homogeneaus poknd (x, ¥, 2, 1) produces the result (o', ¥, 2, k), whene

£ = (d 4 an g b+ P+ anslugt + ) + ang(ug g+ F) — ad)
¥ = by (gt 4 g} (d A+ by Mt +q) + beyluyt + r) — by
= = empliogd + p)+ cngluat + g) + (d + ooy Huyt + 7)) — oy
ho= my g+ ph+ mglugd + gl + mglugd 4 r) = d,

The vanishing podint corresponds (o the infinie point obtained when § = no, So afler dividing x°, ', and
2 by & owe let t — 50w find the coordinates of the vanishing point:

Al g ey Ry dy . +.::|'u,

T k k
(Here, k =N - U= mu; + nyiy + ngtiy.)
bﬂ|H| + tﬂl +- bﬂlh-l'z + m:_ﬂ; ﬂlﬂz
.}IH ﬁ_ k
5, = e nrzu;: 2 el =c+ d%

This poamt lies on the line passing through the center of projecton and paraliel to the vecior U (sze Fig
T-18). Mote that & = 0 only when U &= parallel to the projection plane, in which case there is mo vanishing
point,

Fr Center of projection

s

K
Limes Ly and Lr ane paralbal to veowor U )
Liond L) are projeciions, through O of

lines Ly and Ly oneo view plane

Fig. 7-18

(& The principal vanishing points P, Ps, and Py correapond to the vector directions 1, J, and K. [n these

cases
d = n=a
.|'|_=ﬂ+n— 2 e d £=b
Py, _ b Py p=by— Py
n=> Ry n=c+—
I =¢ n=e ! iy

(Recall from Prob, 7.5 that @, &, ¢ ane the coordinates of the center of projsction. Also, &y, n5, 8y are the
components of the view plane normal vectar and o 15 proportonal to the distance £} from the viesy plane
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to the center of projection. b (Mede: If any of the components of the normal vector are zero, say, m; = (0,
then k =N -1 =0, and there is no principal vanishing point in the 1 direction.)

7.7  Describe the (a) one-principal-vanishing-point  perspective, (5 two-principal-vanishing-point
perspective, and () three-principal-vanishing-point perspective.
SOLUTION
(g}  The one-principal-vanishing-point perspective occurs when the projection plane is perpendicular 1o one

of the principal axes (x, v, or 7). Assume that it is the 7 axis. In this cose the view plane normal vector N
i5 the vector K, and from prob. 7.6, the principal vanishing pomi s

o

(B} The rwo-principal-vanishing-point projection occurs when the projection plane iniersects exactly two of
the principal axes. Befer o Fig. 7-1%, which & a perspective drawing with two principal vanizshing
poants, In the case where the projection plane imtersects the x and v axes, for example, the normal vector
satisfies the relatioinship N - K = 0 or »y = . and so the principal vanishing points ane

o _
r|=#_n X;ma J
gt w=h I Py .l'1=|"+n—!
n=c r=r
w' - _---'_"_'- rF.l

Fig. 7-19
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i) The three-vanishing-point perspective projection occurs when the projection plane imfersects all three of
ﬂ]:pm:]ﬂnu-;.y.nﬂznn.lt:ﬁ:rmhg =20, which is a perspective drwing with thres
principal vanishing points. In this case, the principal vanishing points are points P;, Py, and P, from
Prob. 7.6(b).

7.8 What are the principal vanishing points for the standard perspective transforamtion?
SOLUTION

o this case, the view plane normal N is the vector K. From Prob. 7.6(0), since N-l=0and N-J =
there are no vamishing points in the directions 1 and J. On the other hand, N-K = K - K = 1, Thus there 1
only one principal vanishing point, and it is in the K direction, From Prob, 7.7(a), the coordinates of

principal vanishing point FP in the K direction are

r=a=10 ¥=b=0 f=—:f+%=ﬂ

=

Sa PP = {0}, 0, 0} is the principal vanishing point.

79  An artist constructs a two-vanishing-point perspective by locating the vanishing points P, and VP,
on a given horizon line in the view plane. The horizon line is located by its height & above the
ground (Fig. 7-21). Construct the corresponding perspective projection transformation for the cube
shown in Fig. 7-21.

Fig. 7-21

SOLUTION

A owo-principal-vanishing-point perspective must infersect two s, say, ¥ and y. We locate the view
plane at the point B;(1, 1, 0} so that it makes angles of 30° and 607 with the corresponding faces of the cubs
{zee Fig. 7-21). In this plane we locate the horizon line a given height & above the “ground™ (the xp plane).

Copyrighted material
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The vamishing points FP, amd VP are located on this horizon line. To construct the perspective
transformation, we meed to find the normal vector N = o[ 4+ 8.0 + 5K of the view plane, the coordinates
Cia, b, ¢} of the center of projection, and the view parameters oy, d,, and « (Prob. 7.5). To caboulate the
coordinates of the vanishing points, we first find the equation of the horizon line. Let [; and /; be the points of
intersection of the view plane and the x and y sxes, The horizon line 15 paraile] to the line /1 and lies b units
above it

From triangles f, 88, and F,08, we find

1 I+ 43 :
I=(l=——-ﬂ_1})=(—,ﬂ_ﬂ} and L =1{0,1++3,0)
1 1‘-"_'_5 "tl"_} 2
The equastion of the line through [, and & (App. X) s
L+~.f3) 1+Ji)
i=l——J-—=} =1+ =10
=(C5)-(CF) rmaedd

This line lies in the view plane, So if the equation of the hodzon ling is then taken to be a line paralle] to this
ling mnd & wnits pbove it, the honzon line is guarsnteed 1o be in the view plane, The equation of the horeon
line is then
_ (1 +43
IR
The wanishing poims FP, and FP, ame chosen to Lie on ibe honzon line. So FP, has coordinates of the form

¥R = [(' :;3)(1 =nk{l + ﬁy,.a} and  FPy = [(l :,;@'):1 = L)l + -.-"j}.l'l-.h]

{Here, 1, and ¢y are chosen so as o place the vanishing points &1 the desired locations,)
To find the normal vector N and the center of projection ), we wse the equations in Prob. 7.6, part (&) far
locating the vanishing points of a given perspective transformation. So

B (Y ()

)n-r] y=(l++F 1=k

d
b={l+vTn  and b= {l+yB and o
2

Using the walwes

ﬂ=(::§-’§)“_!!] b=+ c=4
and then substituting, we find
d (1443
"_|=( NG ]u,—:.,] ir.r
and
)
—= {1+l - 1) (7.2)

Since the plane docs not intersect the 2 axis, then N - K = 0, or using components: #y = 0. Finally, we choose
the mormal vector N 1o be of unil benpth;

Nl = /o3 + o+l =
From equatsons (7.0} and (7.2

s A
(+3—n) 0 (L+ 3 —1)
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k71
Ny = | o _
Vil+ 3Pty — 1 [|+ﬁfm-m’
oar
24 I+ /3
— — =1 am d = -
(1 + 31 = 1,) “ 7 et
Al
S (LT I T (s ) T S |
' 1443 2 ST S

Finally, we have

| ="|"+”:""""J‘-'=(H;}] :,:F)U—F )+ {l-|-....-'_]r, ——‘r"—'[f:—f]']

and

1 + /3
]

From Prob. 7.5, the perspective transformation maifrix is then

ﬂl:.=ﬂl+ﬂ.|=

| 1+ 3
( 1= ;.-'j{l = i) Il ( \ll:r]tl ]
|43 Wi Iy i —(1 + ),
Peryg ¢ = 3 o 3k [ - "
L4 41 1443 Lo
ﬂ I D _l] ‘-'r:"'-n}]

Wi+ 43 1443 /

In Chap. 8, Prob, 5.2, it & shown how o corven the trmnsformed image of the cube into x, v coondinates for
VIEWing.

Derive the equations of pamallel projection onto the xy plane in the direction of projection
Y =gl + bJ + K.

SOLUTIOM

From Fig. 7-22 we see that the vectors ¥ and PP have the same direction. This means that PP = &V,
Comparing companens, we see tha

a
.i1:=—E .I:=I—E: and ¥ =§——1I
[ [

In 3 % 3 matrix form, this is
1 0 ==
=
.Inl:lr‘.— '. I. _E_:I
C
a0 0

and so P = Pary - P,
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4

Vagl «+ 03+ K

Fig. 7-22

7.1 Derive the general equation of parallel projection onto a given view plane in the direction of a given
projector ¥ (see Fig. 7-23).

V=al + ) + K 4

We reduce the problem o parallel projection omto the xy plane in the direction of the projector
V=al + b+ cK by means of these sieps:
1. Translate the view reference point R, of the view plane 1o the osigin using the translstion matrix T_g .
2, Perform an alignment transformation Ay 5o that the view normal vector N of the view plane points in the

direction K of the normal fo the xy plane. The direction of projection vector V is transformed to o pew
vector W om gV,

3. Project onto the xy plane using Pary.

Copyrighted maierial
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4. Perform the inverse of steps 2 and 1. So finally Pary g 5 = T_'Iln Ay Pary - Ay - T_p, From what we
leamed in Chap, &, we know that

I 0 0 -x
01 0 —w
T-'-:-‘nul—z.,
oo oo 1

and further from Chap. 6, Prob. 6.2, where 1 = /T + 51 and i # 0 thas

i —HE TH

N AN A ||
0

F3 B |
- - ]
Ay = 4 A
noomm
NN L]l
f 1] L] i
Then, after mualtplying, we find
iy — am —dy —ary g
_ —-El'l'1| -If| = hﬂ‘_; —ﬁﬂ; M.]
Parysn, = —cty —ty dy —emy  edy
0 0 0 d,

Here dy = myxy -+ sigyg + Fyzp and dy = e + apb + sy, An albemative and much easier method to
derive this matrix is by finding the intersection of the projector through F with the equation of the view
plane (see Prob, A2, 14}

7.2  Find the general form of an oblique projection onto the s plane.

SOLUTION

Refer io Fig. 7-24. Oblique projections (fo the xy plane) can be specified by o number 7 and an angle @,
The mumber f prescribes the ratio that any line L perpendicolar to the xp plane will be forechorened afber
projection. The angle 2 is the angle that the projection of any line perpendicular to the xy plane makes with the
{positneel x axis,
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To deterenine the projection iransformation, we need 1o find the direction vector V. From Fig. 7-24, with
lipe L of length 1, we see that the vector PP has the same direction as V., We choose V o be this vector:

V=FPP=s14yI-K (=al+h)+cK)

From }"ig. T2 wefind g=1 =feasf by = Fsind, and ¢ = =1,
From Prob. 7.1, the requimed transformation =

I 0 feosl O
oo fanfl 0
Pav=ly o "0 o
o a0 L] |

T.03  Find the ransfommation for (@) cavalier with & = 43° and (&) cabinet projections with & = 30°. ()
Draw the projection of the wnit cube for each transformation,

SOLUTION

{a) A covaler prection is an obbgue projeciion where there is no foreshortening of lines perpendicular to
the v plane. From Prob. 7.12 we then sse that = 1. With & = 45", we have

¥'2

| O — ik

2
Fan-.=n|¥n
00 0 0
oo o 1

{b) A cabinet projection is an oblique projection with f = 1. With # = 30°, we have

il
I 0 ry (]
Parpy =10 1 ! ]
! 4
6 0 o 0
o oo 1

T constroet the projeciiens, we represent the vertices of the unil cobe by & matriy, whose colunms
are homogensoas coordisates of te vertices (see Prob, 7.1k

0
V = (ABCDEFGH) = :
1

—— = =

{c) T draw the covalier propection, we find the image coondinates by applying the iransformation matrix
Pary_ to the coondinate matrix V.

w2 2 V2 W2

01 1 6 MEN¥S LML NS

2 i 'ty
Fur--lf’:ﬂ.ﬂl|]£ﬂ ﬂ [""_IE
" T 1 7 T3
o000 & 0 0 0
I 1 ! I
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The image coonhinates are then

A" = (0,0, 0 f‘:—_(\ll—l'i.l‘l'ﬁ.ﬂ)
FINR

B = (1,0.0) F=(§,$.ﬂ}

C =110 a={1+"TT,"Tﬁ,u)

Y =(0,1.0 H“:(H‘;—E.H-;.u)

Refer 1o Fig. 7-25.
To draw the cabinet projection:

'"'I

ER ] V3 wEl
g1 — —
10 3 % 1+ 3 1+ 4
, 1 1 1 1
Fary - ¥ = - - et -
¥, o o0 1 1 [-l 3 3 ]4
0 0 O 0 il L1} i
P11 1 i | |
The mmags coordinates are then {see Fig. 7-26)
V3o
A = (0 o0 Ee= e, ,
{0, 0, 0) (4 1y u)
W31
B = (1,0 0p F = T'i'“)
V1
=110 F=(1+—,-,0
(1,0 (1+3550)
. , 11
¥ = (0, 1.0} H{H-T‘LE'U}
r ¥y
2= r]-
E oy
Ir
] C 1 ']
o o c
| , o |
A :
4
F!
I..r"'f I -~
R | — e i i
Al TR 1 A ' B

Fig. 7-15 Fig. 7-26
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7.14 Construct an isometric projection onfo the xy plane. Refer to Fig. 7-27.

- e e s o e

)
4  Projections of vectors 17, 8%, K* onto
1; XY plane have the same length

Fig. 7-27

SOLUTION

We shall find a "tilting"™ of the x, v, 2 axcs that transformes the IFK vector tried to a new set TYK" whose
afthagraphic projections onto the xy plane produce wectors of egqual lengths.

Denating the tilting transformation by T and the onbographic prajection cato the 1y plane by Pary, the
fimal projection cim be written as Por = Pary, - T, where Pary & as defined in Example 3 and T 5 as defined
in Prob. 6.1 in Chap. 6. Multiphying. we find

cosl, sind snll, snd, cosl; 0

_ i [t I‘i'_r — it I'i,‘ i
Par=1 g (i 0 0
i i 0 1

Monw
Fur -1=[cos i, 0,0) Far -1 = (sinf, sind,, cosd,, 0) Par - K = {sind, cos ,, —sinf,. 0]
(ihe projections of the vectors 1, 1, and K}, To complete the specification of the transformation M, we nesd to

find the angles &, and ;. To do this, we use the requirement that the mages Par - I, Par - J, and Par - K are to
all have equal lengths. Mow

|Par 1) = ‘.-'ms! i |Par-d] = ,.a's'm‘ &, sin’ #, + cos® &,

and

Par K|='.||,l'lﬂnzﬁj-l:-mzﬁ +$l'l'l-'2ﬁ'

Setting |Par - J| = iPar - K| leads to the conclusion that sin® #, — cos® #, = 0 and 1o a solution £, = 45° {and
so sinfl, = cos @, = 2/2). Settng |Par. 1j = |Par . J| ma;mmﬁﬂ = Ligin® 1, 4 1), Mul’rlph-ml:huth
sides by 2 and adding cos’ 8, o both sades gives 3cos’ 8, =2 and o solution is i, = 35267 {and s
sinfl, = /173, cosd _-.."T.u"ﬁ Finally

I.E 12 12 0
Vi 2¥3 2V3
VI W2
Par=] g X= _XZ g
2 2
o 0 ¢ 0
00 01
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TA5 Construct a dimetne propection onto the xy plane.

.16

717

T8

SOLUTION

Following the procedures in Prob. 7,14, we shall it the x, y, z axes and then progect on the xp plane. We
then have, ag before,

WPar-1| = Jeost,  |Par-3] = Jsie? B, sin® 8, + eos* 8,

and

[Par- K| = .Illl'I!-ln.'! ﬁ:r coat B, + win® a8,
To define a dimeiric projection, we will specify ihe proportions
[Par 0|2 |Par - J): |Par - Kl =F:1:1 )
Setting |Par - J) = (Par - K|, we find sin’ 8, = cos? 8, = 0 and 8, = 457, 50 sin®, = cosf, = /Z/2. Setting
iPar - 1| = |Par  J] gives
cos’ B, = g[ml f, + 1] (7.3)

Multiplying both sides by 2 and adding P ens® i, to both sudes gives
(24 Fyeos i, =2

80
3
From equation (73] we can also find
2-£ -
it zﬁ —_ mem—— 1 = II
sin” i, 7 and sin i, Viir
[Mote the restriction § < /2. Thus
(oI NI p-R VR RCE
VI+E 2 Y2I:PF I VNI4E
Far = i Vi -2 1]
1 2
0 0 ] 0
i 1] ] 1

and 0 = | = 3,

Mote that any other projeciion ratle, say, 1:1:1, can be achieved by performing an appropriate rodation
befiore apphying Par, In this example, 3 rotaiton of 9F about the v axis aligns the = axis with the x axis so that
Far can be applied,

Supplementary Problems

Construct & perspective transformation given three principal vanishing points and the distance [ from the
center of projection fo the projection plane.

Draw the (a) isemetric &nd (5} dimetric projections of the unit cube aoto the oy plane,

How many view planes {at the ongin) produce issmetric projections of an object?



CHAPTER 8

Three-Dimensional
Viewing and Clipping

An importdnt step in photography i 0 position and aim the camera al the scene in order 0 compose a
pecture. Thi= parallels the specification of 3D viewing parameters in computer graphics that prescribe the
projector (the center of projection for perspective projection or the direction of projection for parallel
prajection) along with the position and orientation of the projection/view plane.

In addition, a wew volume defines the spatial extent that is visible through a rectangular window in the
view plane. The bounding surfaces of this view volume 15 used to failor/clip the objects that have been
placed in the scene via modeling transformations (Chaps. 4 and 6) prior o viewing. The clipped objects are
thien progecied into the window area, resulting in a specific view of the 3D scene that can be further mapped
10 the wlewport in the NDCS (Chap. 5).

In this chapter we are concerned with the specification of 3D viewing parameters, including a viewing
coordinale system for defining the view plane window, and the formation of the corresponding view
volume (Sec, 1), We also discuss 3D clipping sirategies and algorithms (Sec. 8.2), We then summarize
the three-dimensional viewing process (Sec. 8.3). Fmally, we examine the operational organization of a
vpacal 30 grphics pipeline (Sec. 8.4).

81 THREE-DIMENSIONAL VIEWING

Three-dimensional viewing of objects requires the specification of a projection plane (called the view
plame), & center of provection (viewpoint) or the direction of projection, and a view volume in world
coordinates.

Specifying the View Plane

W specilfy the view plane by prescribing (1) a reference point Ry(xg., ¥y, ) in world coordinates and
(2] & st normal vector N = n 1 4 n.d +mK, |N| = 1, to the view plane (see Fig. B-1). From this
information, we can construct the projections used in presenting the required view with respect to the given
wicwpaint oF direction of projection (Chap, 7).

151
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M wnil nomal vector

Fig. 5-1

View Plane Coordinabes

The view plane coordinate system of viewing coordinate system can be specified as follows: (1) let the
reference point By(x;, 3. 5y) be the orgin of the coordiante system and (2) determine the coordinate axes.
To do this, we first choose a reference vector U called the up vector. Al.u'luvnd:nr.l can then be
dmﬂnﬂbﬂhepmjmimuﬁhemﬂmmﬂumplm.%lﬂﬂnva‘d:ﬁmﬂnﬁ:wﬁuu
of the positive g axis for the view plane coordinate system. To caleulate J,, we proceed as follows: with N
being the view plane unit normal vector, let Uy = U — (N - U)N (App. 1, Prob. A2.14). Then

U
J. =1
T

i5 the unit vector that defines the direction of the positive g axis (see Fig, §-2).

¥

View
plarse

Fig. 8-2
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Finally, the direction vector L of the positive p axis is chosen so that it is perpendicular to J, and, by
comvention, so that the riad L, X, and N form a left-handed coordinate system. That is:

r"ulzn-eh.lil
PN

Thiz coordinate system 15 called the view plane covndinale system of viewing coordinaie systemt, A beft-
handed system is traditionally chosen so that, if one thinks of the view plane as the face of & display device,
then with the p and g coordinate axes supermposed on the display device, the normal vector W will point
away from an observer facing the display. Thus the direction of increasing distance away from the observer
is measured along N [see Fig. B-3(a)].

P55 2,

1 L ]
L -
5 t

-
-

World coondinabe sydem  Viewing coonlinase sysiom
{subsenpl w) { subacripd v

(i} {5

[l
[}

i)
Fig. §-3

EXAMPLE 1. I the view plane is the xy plane, then I, = I, J, = J, and the unit normal N = <K form a left-
handed system. The r coordinate of a point measures the depth or distance of the point fram the viesw plane. The sign
indicates whether the point i in front or in back of the view plane with respect to the center or direction of projection.
In this example, we change from right-handed workd coordinates (x, 3, 2) @ lefi-handed wiew plane coordinates
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(¥, ¥, ) [see Fig. 8-3(8)] be performing the transformation:

¥=x
¥y=y
I'=—2
1 & o o0
To — [ (1]
KE=1og 0 -1 0
oo o1

The general transformation for changing from world coordinates to view plane coordinates [see Fig. 8-
1)) is developed in Prob. 8.3,

Specifying the View Volume

The view volume bounds a region in world coordinate space that will be clipped and projected onto the
view plane. To define a view volume that projects onto a specified rectangular window defined in the view
plane, we use view plane coordinates (p, ), to locate points on the view plane. Then a rectangular view
plane window is defined by prescribing the coordinates of the lower left-hand comer Lip_ .. §n), @nd
upper right-hand comer R(Pruy, §ue ). (522 Fig. B-4). We can use the vectors I, and J, 1o find the
equivalent world coordinates of L and R (see Prob. 8.1).

For a perspective view, the view volume, corresponding to the given window, 15 a semi-infinite
pyramid, with apex at the viewpoint (Fig. 8-5). For views created using parallel projections (Fig. B-8), the
view volume is an infinite parallelepiped with sides parallel to the direction of projection.

Copyrighted

material
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-y

Fig. #-5

8.1 CLIPPING

Clipping against a Finite View Volume

The view volumes created above are infinite in extent. In practice, we prefer to use a finite volume to
limit the number of points o be projected, In addition, for perspective views, very distant objects from the
view plane, when projected, appear as indistinguishable spots, while objects very close to the center of
projection appear to hove disjointed structure. This is another reazon for using a finite view volume.

A finite volume is deliminated by using front (rear) and back ( far) clipping planes parallel to the view
planc. These planecs are specified by giving the front distance f and back distance & relative to the view
planc reference point B and measured along the normal vector N, The signed distance & and f can be
positive or negative (Figs. 8-7 and 8-R).

Clipping Sirategies
Two differing strategies have been devised to deal with the extraordinary computational effort required
for three-dimensional clipping:
l. Direcs clipping. In this method, as the name suggests, clipping is done directly against the view
vislume.
2. Camonical clipping. In this method, normalizing transformations are applied which transform the
origmal view volume into 4 so-called canonical view volume, Clipping ts then performed against
the canomical view violume,
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Fig. &7 Pespoctive view volume,

[CHAP 8
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Fi. -8 Parallel view volume.

The canonical view volume for parallel projection is the unit cube whose faces are defined by the
plinesx =0, x= 1, y=0,y= 1,z =10, and z = 1. The corresponding normalization transformation N,
is constructed in Prob. 8.5 (Fig. 8-9).

Fig. &9

The canomical view volume for perspective projections 15 the muncated pyramid whose faces are
defined by the planesx = 2, r = —z, vy = 2, ¥ = —2,2 = 2y, and 2 = | (where z; is 10 be calcolated) (Fig. B-
10). The comesponding normalization transformation N, 18 constructed in Prob. 8.6

The basis of the canonical chpping strategy is the fact that the computations mvolved such operations
as finding the intersections of a line sepment with the planes forming the faces of the canonical view
wolume are minimial (Prob. §.9). Ths is balanced by the overhead involved in transforming pomts, mamy of
which wall be subsequently clipped.

For perspective views, additional clipping may be required to avoid the perspective anomalies
produced by projecting objects that are behind the viewpont (see Chap. 7).

Clipping Algorithins

Three-dimensional chipping algorithms are often direct adaptations of their two-dimensional counter-
parts {Chap. 5). The modifications necessary arise from the fact that we are now clipping against the six
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Figure §-10

faces of the view volume, which are planes, as opposed to the four edges of the two-dimensional window,
which are lines.
The technical differences involve:

[. Fmdmg the mtersection of 8 Ime and a plane (Prob. 3.12).

2. Assigning region codes to the endpomts of line segments for the Cohen—Sutherland algonithm
{Prob. E.EL

3, Deciding when a point is to the right (also said to be outside) or to the lefi (inside) of a plane for
the Sutherland-Hodgman algorithm (Prob, E,.7).

4, Determining the inequalities for points inside the view volume (Prob, 8,109,

B3 VIEWING TRANSFORMATION

Normalized Viewing Coordinates

We can view the normalizing transformations N, and A from Sec. 8.2, under “Clipping
Stralcgies,” as geometric ransformations, That iz, 4y is an object defined in the world coordinate
system, the transformation

Obf =Ny - OB or  Ob =N, - Obj

vields an object Oby" defined in the sormalized viewing coordinate systent,

Canonical clipping i3 now equivalent o clipping in normalized viewing coordinates. That is, the
transfiormed object O is clipped against the canonical view volume, In Chap. 10, where hidden-surface
algorithms are discussed, it is assumed that the coondinate description of geomeiric objects refers to
nommilized viewing coordinates,

Screen Projection Plane

After clipping in viewing coordinaies, we project the resulting strocture onto the screen projection
plane. This i the plave that results from applying the ransformations M, or N, to the given view plane.
in the case N, from Prob. 8.5, we find that the screen projection plane is the plane z = —f/{b - 1} and
thai the direction of projection is that of the wector K. Thus the parallel projection is orthographic {Chap.
T}, and, since the plane = = —§F /(b = ) 15 parallel to the xv plane, we can choose this latter plane as the



CHAP. 8] THREE-DEMENSIONAL VIEWING AND CLIPPING 159

projection plane. So parallel propection Par in nonmmalized viewing coordinates reduces to orthographic
projection onto the xy plane. The projection matrix is (Chap. 7, Sec. 7.3)

1

0 o
0 o
Par = -
0 1

0
LE
0 0
0 0
In the case of perspective projections, the screen projection plane is the plane = = &ic, + &) (Prob. §.6).
The transformed center of projection is the ongin. So perspective projection Per in normalized viewing
coordinates is accomplished by applying the matnx (Chap. 7, Prob. 7.4)

(% ¢ o o

¢, + b
i
0 £ 0 0
Per = e+ b
ol
0 i s 0
o i | 0/

Constrocting 8 Three-dimensional View

The complete three-dimensionol viewing process (without hidden surface removal) is described by the
following steps:

1. Transform from world coordinates to normalized viewing coordinates by applying the transfor-

mations N, of N

2. Clip in normalized viewing coondinates against the canonical clipping volumes.

3. Project onio the screen projection plane using the projections Par or Per.

4. Apply the appropriate (two-dimensional} viewing iransformations (Chag. 5).

In terma of mansformations, we can descrobe the above process in terms of 4 wewing famsformation
Vr, where

Vp=V;-Par-CL-Npy o Fp=F;-Per-CL-Np,

Here CF and ¥, refer o the appropriate clipping operations and two-dimensional viewing transformations.

84 EXAMPLE: A 3D GRAFHICS PIPELINE

The two-dimensional graphics pipeling introduced in Chap. 5 can non be extended to three dimensions
{Fig. 8-11), where modeling transformation first places individually defined objectes into 2 common scene
(i.e. the 3D WCS). Viewing mansformation and projection are then carried out according to the viewing
parameters a6t by the application. The result of projection in the view plane window is further mapped 1o

Mibchng | ) i
D Vienrg Frsatnm :
bt Trmgfamrstia | — —a - YW
Defnisicn, | {CTM) | Dot Trams Lt
S L ].
e g Faniatiom

Fig. 811 A 3D graphics pipeline
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the appropriate worksiation viewpoini via 2D viewing franaformation and scan-converied to a discrete
imige in the frame buffer for display.

An apphication typically specifies the method of projection and the corresponding view wvolume with
syatem calls such as

perspective (X, &, Ir, 2y )

where the viewpoint of pemspective projection O 8 assumed (o be af the orgin of the W5 and the
perspective view volume centers on the negative z axis (away from the viewer), = denotes the angle
betwezn the top and bottom clipping planes, a_ the aspect ratio of the view plane window, z, the distance
from C fo the front clipping plane (which is essentially also the view plane), and z;, the distance from C to
the back clipping plane.

O the other hand, orthographic parallel projection can be specified by

orthographic (v, Im.}',,..,._&'mﬁ;.i.:.]‘

where the direction of projection is along the negative z axis of the WCS; the first four parameters of the
call define the lefi, right, botiom, and top clipping planes, respectively; and the role of z; and z;, remains the
sarme as 0 the perspective case above,

Other calls fo the system hibrary often provide additional functionality, For example, the center of
perspective projection can be placed amywhere in the WCS by a call that looks like

lookat (X0, ¥p. 20, Xp, ¥p, Zp)

whene x,, v, 2, are the coordinates of C and Yo ¥ 2 ATE the coordinates of a reference point P—the
perspective of view volume now centers on the line C to P, The v axis of the WCE, or more precisely,
vector J, serves as the up vector that determines 1, and J,. An additional parameter may be included to
allow rotation of the viewing coordinate system (with & = C,, the center of the view plane window) about
its z axis, 1.e. line OF

Using perspective] ) and lookat] ), we can conveniently produce a sequence of images that animate 3
“walk-by™ or “flv-by™ experience by placing P on an object and moving O along the path of the camera
from one frame to the next (Fig. #-12).

v G
0,

b-,:l

Fig. 812

Finalky, we want to nole a couple of crucial operations. of the 3D graphics pipeline that have mot yet
been discussed. The first 15 to prevent obpects and portions of objects that are hidden from the viewer's
evesight from being included in the projected view (Chap. 10). The second is to assign color attribuies to
pixels in a way that makes the objects i the image look more realistic (Chap. 11).

Solved Problems

B.1  Let Pip, g), be the view plane coordinates of a point on the view plane. Find the world coordinates
P(x, », z},, of the point,
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SOLUTION

Refer 1o Fig, 8-13, Let By, be the view plane reference point, Let B be the position vector of By and W the
position vecior of P, both with respect to the world coordinate ongin (see Fig. 8-13). Let ¥V be the position
viector of P owith respect 10 the view plane ofgin R, Now

Vepl+gd, ad W=R+V

Fig. 8-13

W=R+pl,+ql
Let the components of 1, and J, be
ly =al+bd+c K Ly=al+bl+cK
Alsn
R = xgl + ppd + 2K
and so from W = R + pl, + gd, we find
w={,:u-|-pn,+m!l+h+p&,+qﬁ,}l+{h+p¢r+gﬂ!]{
The required world coordinates of P can be fead off from B
Pxg + pa, & qag Wy + phy + b, 5y + pe, + qc,),

8.2 Find the projection of the unit cube onto the view plane in Prob, 7.9 in Chap. 7. Find the
corresponding view plane coordinates of the projected cube.

Copyrighted maierial
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SOLUTION

Following Prob. 7.9, we muwst specify several parameters in onder to calculate the cormesponding
perspective projection mairix Pery 5 . Choosing h =L &, = 1, and & = (1 — /3)/{1 + +/F), we obtain

2 \

(o wor S _2
1=-473

Pere . w LTY3 ¥ T A
nReE T2 V3 1 ~243 |
M +43) H+45 1443 "2

WE] 1 1+ 3+/3

ETIOY; R, I _(W)J

Applying Pary g o to the matrix V' of homegeneous coordinates of the unit cube, we have Poryg o o F = 7,
where I is the mairix (48 CFEFFH). Afker matrix mubiplication, we have

‘":1 121@::

. » -3 -1 -1 » s —243
L4 +F 144T 1443 [+ 3
—2+3 -2,
_“+1.I'I§] —I |+..‘I"j —3 —3 —{|.+~.|"'i} =1 m
1 -1 o -3 541 1+5J§) _(|+4-ﬁ) -2/
2 21+ 43 214 VT A1443) {14473 1443 1+
1433 1+240 =23 =33 =343 1+3Jﬂ L+ 243y =243

k_(1+»..-'3) _{ _( _( }

L+ 1443 (1443 (1440 14+ /3 1+43/) 144/

Changing from hamagenssus coomdinates fo workd conrdimades (App. 2), we find the coordinaies of the
projected cubs b be

H[z{::n‘i;} 1{12:;]:4: If’ir] EGHT:E%)
3,[2('1 -:_?\::13} Lij Iﬂ A1 +lz-.f3:|] F'[E(ll: 3{;) I|[ I:;ﬁ} ztlltri:g]
L 1.0) G,[l(1+~.-"5) 1443 1+4/3

14+230 1+ 23" 201 + 249
2 14471 ,
H(E'T'E) H{1,1,1)

Te change from world coordimates to view plane cosrdinstes, we first choose an wp vector, Choosing the
wector K, the direction of the positive £ axis, as the up vector, we next find the view plane coordinate vectors L,

ard Iy
With our choices £ and ry, we find that tee wnit normal vecior N (Prab. 7.9) i1
3 1
M=-=0+:-1
z T3

Chogaing U = K, and using Prob, A2 14 {App, 2}, we find that

Uy=U<N-UN=U (EmzN-U=0) =K amd I,=—"=K
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(Mote to shedent using equation {42-7) of Prob. Al.14: we have used the fact that [M| = 1 and replaced 'V,
with U, and ¥ and 1)

Mo
_ Nxdy
PN e
Caleulating (App. ), we obtzin
L 3
N:-ca':E—l[—"'z—rJ and  N=J =1
S0
1. 3
L=-1-—1
P2 2
Tir comvent & point P with world coordmaies (x, y, 2}, o view plang coondinates (g, g, we use the squations
from Prob. B.1:

=1y +pa, +ga, y=w+pb, +qb, =15+ pe, + 45,
where (xy, ¥y, 5) are the coondinates of the view plane reference point £;. Now

1, /3
1P=u,1+b,1+c,u=i:-71+uu Jy=al+bJ+c K=01+00+ K

Chaosing Ba{l1, 1, 0) as the view plane reference podat, we find
1 —3
:r=1-p+l _u=--i—p+] =g

Solving for p and g, we have
oe=2x-1) and ge=z
LUising these squations, we comvert the transformed coondinates to view plane coordinates:

Ar[z(ll;iij'i)' :1: I:j'ia] E(_%' %)

2 l 1 =43 1+ 543
F[| + 243 21 +1ﬁ;] F[1(| +1ﬁ)'m + Mi:u]

2 1+ 443
{0, 0 e .
0.9 [1+1J§ 3i1+1~.-"3}]
21
ﬂ'(—a.a] 0, 1)

Refer o Fig. 8-14. Mate also that the coomdinates of the view pomnt or center of projection C amd the vanishing

j-

Fig. 8-14
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pemnids FIP)oame #F5 can be found by using the equations from Prok. 7.9:

Cla, b, o= -':[:1.1 + Jj_zl] Py [:n. | 4+ /3, %} I’FE(:'.. 1—+/3, %:]

In view plane coordinaies:
Ky =2 I) amud FiPy| 2 :
|(- '3 . 2 'i:].

Find the transformation T, that relates world coordinates to view plane coordinates.
SOLUTION

The world coordinate axes are determined by the right-handed triad of wnit wectors [ J, KJL
The view plane coordinate axes are determined by the lefi-handed triad of vectors [L. X, N] and the view

reference point Ryl V. %)
Refermming to Fig. B-3a), e construct the transformation T, throogh the concatenation of the mairoes

determined by the following stcps:

. Translace the view plane reference point Ry, ve., 250 0 the world coonbinae origin via the translation
muatrix T, Here ¥ i3 the wector with components —xl — vl — 2K

2. Align the view plane nommal N with the vecior K (the direction of the negative 7 axis) using the
trunsformation Ay, (Chap. 6, Prob. 6.5), Let E, be the new position of the vector I, after performing the
alignment tansformation, e

L L™

3. Rotate I, about the £ axis so that it aligns with I, the direction of the x axis. With & being the angle
betwesn Iy, andd 1, the moiation & Ry (Chap. 6.

4. Change from the nght-handed coordinates fo lefi-handed coordinates by apphyng the transformation Ty,
froem Example 1. Then T, = Ny - R - Aw g - T IF{x,, ¥, 2] @re the world coordinates of pont F,
the wicw plane coondimates (v, ¥, 2.0 of & can be found by applying the tmasformation T,

Find the equations of the planes forming the view volume for the general parallel projection.
SOLUTION

The equation of a plane i3 determined by two vectors that are conlained i the plane and a reference point
{App. 2, Prob, A2 100 The cross product of the tvo vectoms determines the direction of the normal vector o
the plane,

In Fig. 8-8, the sides of the window in the view plane have the directions of the view plane coordinage
wBUIrS IP arud Jq. With V as the vecior determaning the direction of projectian, we find the Fn'lhwin' planes:

l. Top plane—determined by the vectors I, and V and reference point B, messured 1 units along the unit

normal vector W = ml + s J -+ 5K from the upper fght comer ®(r,, r3, ry) of the window, Reference
point K¢ has world coordinates (ry + 8y, 4+, Fy + )

2. Botom plane—determined by the vectors 1, and ¥ and the reference paint L. measured from the lower
left comer Lify, ;. i3} of the window, Peind Ly hos world coordinates (fy < B, 0+ fig, 0y 4 ).

3. Right side plane—determined by the vectors J; and V and the reference poimt 8.

4. Left side plane—determined by the vectors Jy; and 'V and the reference point Ly

Front and back clipping plawes are pamlle]l to the view plans, and thus have the same normal vector
H=?i|'|| +'!J +|'|'_1K.

5. Frows  fnear)  plone—determined by the normal  wveetor N oand  oreference podint
Pelxy <y, Vo + My, 2y + 1), measured from the view reference point Byixg, ¥, 5)
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6 Back gorl  plore—determined by  the  nommal  vector N and  oreference point
Py + bmy, vy + by, 2+ by ), messyred b units from the view plane reference point Bj,

8.5 Find the normalizing transformation that transforms the parallel view volume to the canonical view
violume determined by the planes x =0, x = 1, vy =0, v=1,z= 10, and z = 1 {the unit cube).

SOLUTION

Referring 1o Fig. 8-, we see that the required transformation Ny, is built by performing the following
serwes of transformatrons:

I. Translste so that &, the view plane reference point, is ot the ongin, The required transformation is the
translation T, .

2. The vectors 1, J,, and N form the keft-handed view plane coordinate system. We next ahign the view
plane normsl vector N with the vector —K (ihe direction of the negative z asis). The alignment
transformation Ay _x was developed in Chap, 6, Prob. 6.5, Lat I; be the new position of the vector IF:
that iF. I;, = ""H.-E '[',.

3. Align the vector I, with the vector 1 (the direction of the positive x axis) by rotating I, about the 7 axis.
The requited transfonmation is Ry . Here, 8 is the angle betoeen l;, and 1 {Chap. ). When R  aligns I
with I, the vector J, (where I, = A4y - 1.} is aligned with the vector J (the direction of the positive y
axigh

4, We change from the nght-handed world coordinate system to 8 lefi-honded coondinate system, The
requined oricntation changing transtormation s [see Fig. 8-3(5)] (see also Example 1)

0 0

I 0
01 0
Tﬂ‘ﬂn-1
00 0

— 0 =

5. Let ¥ be the new position of the direction of projection vector V; that is, V' = Ty - By g - Ax g+ V. The
pew position of the mansformed view volume is illostirated in Fig. 8-15. Now bow the view volume is
skewed along the line having the direction of the vecior V. Suppose that the components of V' ane
V' =1+ + K We now perform & shearing transformation that transforms the aewly skewed view
volume 10 a rectangular view volume aligned along the = axiz The requined shearing transfrmation 15
determined by preserving the new view volume base vectors T and J and shearng V' 1o the vector oK
(the K component of V'); that is, 115 transformed to 1, J 15 taonsformed oo J, and V' is transformed to oK.
The required transfommation & the mairix

o0 1
In order to concaténate the mnsformabion so as o bald Ny, we use the 4 x 4 homogeneous form of 5k

Sk

i a
o
0

_———d

o o o1

fi.  We now translate the new view volume so that its lower keft comer Ly will be at the origin. To do this, we
ot that the firt four ransformations comespond to te view plane coordinaie system transformstion in
Prob, 8.3, So after performing these transformations, we find that the lower left corner of the view plibe
window Lip ., @, (View plane coordinates) transfirms to & poiot L' on the o plane whaose coordinates
P2 (P Pemis - (1. Similarly, the upper right comer & is transformed to 85w . T 0 After pecforming
the sheanng transformation 54, we see that the view volume is aligned with the = axis and the back and
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fromt faces are, respectively, b and f units from the 5 plane. Thus the lower left comer of the view volume
i8 8 LilPeis: Fuie. f) and the bounds of the view volume ane po. <X = Py Guie T F = G
Jf =z = b The required translation i T_..

7. We now scabe the rectangular view volume 1o the unit cube. The base of the present view volume has the
dirmensions of the base of the original volume, which corresponds io the view plane window; that s

The depth of the new view volume s the distance from the front chppng plane to the hick clippang
plane: d = & — . The required scaling is the matrix {in 4 = 4 homogeneous form}

1
— 00 o)
-

0 1
'SI.'-.I.'H-.I.'d' = ki

=
=

LU

= R)=

ML
The required mnsformation is then
Now = Sppumnpe Top S0 Tpp - By Ay e Tog,

Mote alsy that after performing the fransformation N, the view plane transforms io e plane
2= =f (k=) parallel to the x plane. Also, the direction of projection vector 'V tmosforms o &
vecior parailel to the vecior K having the direction of the 2 axis.

B.6  Find the normalizing transformation that transforms the perspective view volume 1o the canonical
view volume determined by the bounding planes x =z, x = =z, y =z, y = -z, s =z, and z = 1.
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SOLUTION
Refernng to Fig. 8-7, we build the normalizing transformation AL, through a serics of transformations.
Az in Prob. 8.5:
I. Translate the center of projection O bo the ongin using the manslation T_-
L, Align the view plane normal N with the vector —K using Ax g
3. Rotate I to the vector | using the rotation R - (Recall that [, = 4y _y - L)
4. We pow change from righi-handed world coondingies fo lefi-honded coordinates by applying the

=N

transfirmation

(==~
|

I
L]
ilh
L]

The newly tmnsformed view vobume is skewed along the cenerline podwing the origin (the ransisied
center of proqjecton) with the center of the (ransformed) view plane window (Fig. 8-16), Lei O be the
coordinates of the center of the original view plane window, Then O, has view plane coordmates

[Frlll "I'-I':'ru.t. ) W rain ; q'r-;}l

These are changed 10 workd coordinates as in Prob. 8.0, Let CC_ be the vector from the center of
prajection o the cemter of the window. Let (CC, ) be the transformation of the vector CC,; that ix,
(OC,F =Ty - Byy - Ay g - OC,. Then (CC_) is the vector thal joing the origin to the center of the
transformed view plamne window (Fig. 8-16), Suppose that (TC,,) = /1 + e + o K. W shear the view
volume so that it ransforms w a view volume whose center ling lies along the z axis. As in Prob. 8.5, the

R
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requited shearing transformation is

&
(10 -= o

l]’

G
o010
\o 0 0 1/

The newly transformed window is, alter apphying the shearing dransformation Sh, located on the £ axis at
I, =0

Refernng 1o Fig. 817, the vansformed window i now centered on the 2 axis. The dimensions of the
window ang
WoiE P = P (WAL} and b = Grean — Gimin (height)

The depth of the new view vobare is the distance betoeen the front and back chippmg plapess: d = & = .
The ransfommed window §5 cemtered on the £ axis at 2, = ¢ and is bounded by

WL Jr{ {_.Fu
—3S¥E3  -3=rs3
I
R}

nt

Fig. 817
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The transformed view plane is ocsted af 7, = ¢}, The tmnsformed front clippmg plane is located of
Ty = % 4 . The back clipping plane is now located ot z, = cf 4 b

To tranaforen this view volame inte the canonical view volume, we first scale in the = direction se that
the back-clipping plane is transformed to 2 = I, The required scale factor ia

Y
The scaling matrix is
[ 0 0
no o Ll
[ —
11, 0 B ,;.l..,l,
o a 0 1

To find the new window boundanies B and L°, we apply this scaling transformation o the present

window coardinates
woh
*’(5-5-‘=]

w ol w2l
sz, = d L's|=-z.,-7—=
{: 3 ﬂ;+h) - ( 1'73 J:+.a)
Mgzt we scale in the x and v directions so that the window boundanics will be

( g &4 4
b gAtb o4k

e £ £
7 !

T
= d
(qﬂ: o +b r_'.+£:) o

That is, the window houndaries will lie on the planes x =z, x = =z, p = 7 and y = =z, The required
scale factors ane

2 i
“Cgen ™ Y THg+en
The comesponding scaling transfrmation is
I|l‘-l-"[r'flr':l' & ‘ ﬂ'll
2c}
Sl = hict + b)
0 ] [
f ] a 1/

Multiplication of these scaling ransformations inle one transformation yiekls

{2 \
W 0 o
wicg + b
2
0 : 0 0
Sy = h(c. + b
!
i i — 0
& + b
R ] (i) if
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To find the location of the front clipping plane, =, we apply the ransformation S, , , 10 the present
location of the center of the front clipping plane, which i C(0, 0. ] + 7). S0

. r'i+f)
L 0 =00,
ik Y ( ¢+ b

o

L h

T
The complete transformation can be written as

Mo =8, o o STy Ry A i Top

Mate that afer perl"urm:mh: the ranzlpmmation ."ul'm, the view plane s transformed o the plane
__%
= a+b

parallel to the xp plane. Also, the center of progection C & ransformed te the ongin,

L]
=

How do we determine whether & point P is inside or outside the view volume?
SOLUTIOMN
A plane dvides space inte the two sides. The general equation of a plane is (App. 2)
gl — xy) 4 mgly — b+ gl — =10
W define a scalar fumction, F{P), for any poant Ple, v, 2) by
JUPY = 0, w2 = mglx = xp) + msly = pgb + mglz = 30

We sy that @ point P is on the same side (with respect to the planed as point F if sign F{P) = sagn (O,
Referring to Figs. 8-T or 8-8, let iy, f5 fa. o0 and e be the fimcions associaded wath the jop, bobom, myghd,
ledt, near (frost), and far (hack) planes, respectively (Probs. 8.4 and 8.10)
Also, L and R are the lower beft and upper right comers of the window and F, and P, are the reference
points of the back and front clippimg planes, respectively.
Then & poant P i3 inside the view volume if all the following hobd:
F iz on the same side as L with respect fo 5
F 1% on the same side & K with respect o
F is on the same side as L with respect o f;
15 on the same side & R with respoct o [
F 15 on the same side as Py wilh respect to fy
# is on the same side as Py with respect 1o fr
B bemitly
sign f{{F) = sign f{L}  sign f,(F) = sign f; (R)
s1gn [l ) = sigm fp(R) sign [yl P} = sign fyiFy)
sign fGF) = sign (L) sign GOF) = sign f-(Fy)

Show how region codes would be assigned to the endpoints of a line sepment for the three-
dimensional Coben—Sutherland clipping algorithm for (a) the canonical parallel view volume and
(&) the canonical perspective view volume.

SOLUTION

The procedure follows the bogic of te tee-dimensional slgorithm in Chag. 5. For three dimensions, the
planes deseribing the view volume divide thres-dismensional space into six overlapping exterior regions {ie.,
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ahove, below, to right of, to left of, behind, and in front of view volume), plus the interior of the view volume;
thus &-hit codes are used. Let Plx, y, 2} be the coondimates of an endpoimi.

(a) For the canomics] parallel view woleme, each bit is et w troe (1) or false (0) according 1o the scheme
Bil | = endpainl s above view volume = sign (y— 1)
Bit 2 = endpoint &5 below view volume = sagn (=—y]
Bit 3 = endpoint & to the Aght of view volume = sigr (x — 1)
Bitd = mdpﬂ,rinl i b the beft of view volume = SUgn [=x]
Bit § = endpoint is behind view volume = sign {z — 1)
Bit 6 = endpoint i3 in front of view volume = sign {—z)
Recall that sign (a) = 1 if o 13 positive, 0 otherwise,
(b}  For the canonical perspective view wolieme:
Bit | = emdpont 15 above view volumse = sign (y = 2}
Bit 2 = endpoint iz below view volume = zign (—2 — ¥)
Bat 3 = emdpount 35 #o the nght of view volume = sigm (x = 2}
Bit 4 = endpoint is to the left of view volume = sign (-2 — 1)
Bit 5 = endpoint 15 behind view volume = sign (z = 1)
Bit & = endpoint is in front of view volume = sign (z; — 2]
The category of a ling segment (Chap. 3) is (1) visdble if both region codes are D00, (2} not visible iof

the bitwise logical AND of the region codes is mor DRIOM, and (3) clipping candidate if the bitwase
logical AND of the region codes 15 (00,

Find the infersecting points of & line segment with the bounding planes of the canonical view
volumes for (o) parallel and () pemspective projections,

SOLUTIOMN

Let P (x,, vy, 2 b and Py{xy, 1y, 250 be the endpoimds of the line segment. The pammetric equations. of the
line @=grment ar:
=gy 4l =5 N y=m+iE-nK r=0 -k
From Prob. K.11, the miersechon parameder is
-N-R,F,
N-FF;
where N is the normmal vector and 8, 15 a reference point on the plane,
(@} The bounding planes for the parafle] canonical view volume are s =0, r= |,y =0y =1,z =0, and
z = |, For the plane x = |, we have N =1 and R, (1, 0, 0k Then
= =ix; =1}
o Iz = X

L =

If & = & = 1, ihe line scgment intersects the plane. The point of intersection is then

xy — 1 -1
X=X +|:II—I-|](— ul )= 1 Y=y +|}‘3—FLJ(' 2 )

X3 — I Xz =X

I=z +[:!—:1][:— I]—])

Iy =15

The imnkersections with the other planes are found in the same way.

{#) The bounding planes fior the perspective canomics] view volume &fé T =2, ¥ = —2, ¥ =32, b= =,
z=12¢ and = | {where 2, is calenlated as in Proh. 2.6)
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where
pp=—Ax— Az
F;:M—&.
py = =4y — Az,
Py = Ay — Az
Ps = <Az,
Py = Az,

Supplementary Problems

) =X +3
gz =3 =X
du =0+
gy = — ¥
Js =12 =L
g =1 -3

{heft)
(right)
(hottom ]
(1op}

{ From
(hack)

B.I11  Find the equations of the planes forming the view volume for the general perspective projection.

B.12 Find the intersection point of a plans and a line segment.



CHAPTER 9

Geometric
Representation

One of the major concepts in computer graphics s modeling of objects. By this we mean numerical
description of the objects in terms of their geometric property (size, shape) and how they interact with light
(reflect, trans=mit). The focus of this chapter is on geometric representation of objects. We will discuss
dluminaton and shading models in subseguent chapters,

A graphics system typically uses a set of primitives or geometric forms that are simple enough to be
efficiently Implemented on the computer but flexible enough to be easily manipulated (assemblad,
deformed) 0 represent or model a variety of objects. Geometric forms that are often wsed as primitives
include, in order of complexity, points, lines, polvlines, polygons, and polyhedra. More complex geometric
forms include curves, curved surface patches, and quadnc surfaces,

1 SIMPLE GEOMETRIC FORMS
Points and Lincs

Points and limes are the basic building blocks of computer graphics. We specify a point by giving its
eoordiantes in three- (or two-) dimensional space. A line or line segment 15 specified by giving its endpoinits
Byl B s and Pylxy, vy 23).

Polylines

A polvline i= a chain of connected line segments. It is specified by giving the vertices (nodes)
Foe s ooy defining the line segments. The first vertex is called the iniial or starting point and the last
vertex, the final or terminal point (see Fig. 9-1).

Polygons
A polygon 18 2 closed polyline, that is, one in which the initial and terminal points coincide. A polygon
i specified by it verrex list Py, . . .. Py, Py The line scgments PoPy, PPy, .., Py P, are called the edges

of the palygon. (In general, we need not specify Py, twice, especially when passing the polygon to the
Sutherfand=Hodgman clipping algorithm.)

174
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Fig. 9-1
A plarar polygon is a polygon in which all vertices {and thus the entire polygon) lie on the same plane
(see Fig. %2}
9.2 WIREFRAME MODELS
A wirefram model consists of edges, vertices, and polvgons. Here vertices are connected by edges, and

polvgons are sequences of vertices or edges. The edges may be curved or straight line segments. In the
latter case, the wireframe model is called a polygonal net or polvgonal mesh (Fig. 9-3).

‘1-.-.-..:.;1 : Al an, P -L"-ti."‘. ™
ARt LU § 5, R
f T
r*t'it"' 1\“ﬂ|‘|.\:a'.ﬂt\1um -
e,
W

Y
SR

(2} Wire frame model.

Fig. 9-3
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Representing a Polygonal Met Model
There are several different ways of representing a polygonal net model,

1. Explicle vertex list V= {Fs, P, Ps. ... Pyl The points Pix, v, o) are the vertices of the
polygonal net, stored in the order in which they would be encountered by traveling around the
masdel. Although this form of representation 15 useful for single polvpons, it is quite inefficient for
a complete polyeonal net, in that shared verfices are repeated several times (see Prob. 9.1} In
addition, when displaying the model by drawing the edges, shared edges are drawn several times.

2. FPolygon listing. In this form of representation, cach veriex is stored exactly once in & veriex list
VF=iFfg.... Py, and each palygon is defined by pointing or indexing into this vertex list (see
Prob, 9.2}, Again, shared edges are drawn several times in displayving the model.

3. Explicit edge listing, In this form of representation, we keep a vertex Ligt in which each vertex 15
stored exactly once and an edge list in which each edge is stored exactly once. Each edpe in the
edge list points 1o the two vertices in the vertex list which define that edge. A polypon 15 now
represented as a list of pointers or indices into the edpge list. Additonal information, such as those
polygons sharing a given edge, can also be stored in the edge hist (see Prob, 9.9). Explicit edge
listing can be wsed to represent the more general wireframe model, The wireframe mode] is
displayed by drawing all the edges, and cach edge is drawn only once,

Polybedron

A polyhedron 15 a closed polygonal pet {i.c., one which encloses a definite volume) in which each
polygon is planar, The polygons are called the faces of the polyhedron. In modeling, polvhedrons are quite
ofien treated as solid (i.c., block) objects, as opposed 1o wireframes or two-dimensional surfaces.

Advantages and Disadvantages of Wircframe Models

Wirefrume models are used in engincering applications, They are easy to construct and, if they ane
composed of straight lines, casy to clip and manipulate through the use of geometnic and coordinate
transformations. However, for building realistic models, especially of highly curved objects, we must use a
very large mumber of polygons to achieve the illusions of roundness and smoothness,

9.3 CURVED SURFACES

The use of curved surfaces allows for a higher level of modeling, especially for the constructiodn of
highly realistic models. There are several approaches to modeling curved surfaces. One i3 an analog of
polyhedral models. Instead of using polygons, we model an object by using small, curved surface patches
placed next io each other. Another approach is to use surfaces that define solid objects, such as polyhedra,
spheres, cylinders, and cones. A model can then be constructed with these solid objects used as building
blocks, This process is called solid modeling.

There are two ways o construct a model—addivive modeling and subtractive modeling, Additive
madeling is the process of building the model by assembling many simpler objects. Subtractive maodeling
is the process of removing pieces from a given object to create a new object, for example, creating a
tevlindricaly hole in & sphere or a cube, Subtractive modeling i3 akin to sculpting.

9.4 CURVE DESI:N

Civen r + 1 data points, Pylx,, vl .. .. P, (x,.¥,) we wish to find a curve that, in some sense, fits the
shape cutlined by these points. IF we reguire the curve to pass through all the points, we are faced with the
problem of inferpolation, If we require only that the curve be near these points, we are faced with the
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problem of approcisation, Interpolation arises, for example, in reconstructing the shape of a digntized
curved objects, Approximation is used in compater graphics to design curves that “look good™ or must
meet some aesthetic goal. To solve these ofien quite distinet problems, it is necessary o find ways of
building curves out of smaller pieces, or cwrve segments, in order to meet the design crteria, (Note thiat
curves and curve segments can be modeled as polylines, i.e., dmwn with extremely shor line segments.)
When modeling a curve fx) by using curve segments, we try to represent the curve as a sum of smaller
segments $0x) (called basis or blending fimchions):
N
Fia) =% alix)

i

We choose these blending functions with an eye toward computation and display. For this reason,
polynomials are often the blending functions of choice.
A polvromial of degree n is a function that has the form

Qi) =a " +a, "+ +a g

This polynomial is determined by its n + 1 coefficients [a,, ..., ayl.
A continuous piecewise polynomial ((x) of degree n is a set of k polynomials g (x), cach of degree »
and k 4 1 knots (nodes) &, ... . 6 so that

)= qix) for L =<x=i and i=10,....k-1

Mote that this definition requiras the polynomials to match or piece together at the knots, that is,
Gl =gdr), i=1,..., k= 1. This reguirement imposes no restrictions on how smoothly the
polynomials g,(x) fit fogether. For example, there can be comners or sharp contours at the knois [see
Fig. 9-4).

Polynomials of high degree are not very useful for curve designing because of their escillatory natre.
The most useful piecewise polynomials are those for which the pohynomials g,(x) are cubic (degree 3).
There are several reasong for thiz, One is that the piecewize cubic closely resembles the way a drafier uses &
mechanical spline. In addition, 3 iz the smallest degree which hos the required smoothness properties for
deseribing pleasing shapes. It 15 also the minimum number needed to represent three-dimenstonal curves.

9.5 POLYNOMIAL BASIS FUNCTIONS

Let Piy(xg, Yab .. . Folxy, ¥y ) represent o + | data points, In addition, let &y, £, f3. . ... be any numbers
(called kmois), The following are common choices for basis or blending functions.

Lagrange Polynomials of Degree n

" I—I‘I

Lix) =11

b Xy — X
awd

i=001,....m
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of the tangent line) at the given data points, that is, we prescribe the points (x,0%), ... (x, ¥ )
H(x) = L [y H0) + 3]

where H{x) and A {x) are the Hermitian cubic basis functions and fy, = x, 1, = x,, & = X, ..., I, = x, are
the choices for the knot set.

Spline Interpolation

If we require that the interpolating piecewise polynomial be joined as smoothly as possible at the data
points, the resulting curve is called a splive. Therefore, a spline of degree m has continuous denivatives up
o order pr — 1 of the data poinds.

It can be shown that any mth-degree spline that passes through » + 1 data points can be represented in
terms of the B-spline hasis functions B, , as

mea—|

Seltd= ¥ al (x)

ferl}

In order o define the B-spling functions 8, (¥} 50 as to solve the interpolation problem, the knots
| P Fopipsq Must be chosen io satisfy the Shoenberg-Whitney condition:

i = X < Difwmts i=l.. ...
The following choices for the knots sansfy this condition {see Prob, 2.4):
Step 1. Choose

i ==+ =1, <Xy fhs] = = S lganyy =5,
Step 2. Choose the remaiming knods according o
Bl T T i
i
For cubic splines {m = 3), an alternative to step 2, requiring less computation, is step 2, Choose

‘.4..-4.|= r'={l.....n—m—]

.I'I-H=.!:‘_1. i=0....n—4

The splines 5,(x) and 5;(x) are called guodraric and cubic splines, respectively:

Arl wid

Salxy = ¥ a8 5ix) and Silx) = ¥ af4ix)
=i} =]

Confining our attention o the cubic spline, we seo that there are & + 3 coefficients g, to evaluate, requiring
i+ 3 equations,
The interpolation criterion S;0x) = ;. j = 0.... . » provides o + | equations:

x5

Hra

F.' = 'Iji.:l[‘l..l':I - E ﬂlﬂhﬂ.-r_,-}
[
The remamng two squations are usually specified as boundary conditions at the endpoints x, and x,.
Some choices for boundary conditions are
1. Narral spline condition
Silgh=0  S{r)=10
2. Clamped spline condition

Sinl=y Sixgl=y,
where w, and ) are prescribed dervative values,
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3. Owelic spline condition
Simg) = §ix,) 8y legh = 5y(x,)
This is useful for producing closed curves.
4,  dAnmricvelic spline condition

Sileg) = =8l Sig) = -5x,)
This is useful in producing splines with parallel endings whose tangent vectors are equal in
magmitude but opposite in direction.
For technical reasons, boundary condition 1, the so-called natural boundary condition, is the least
preferred choice.

8.7 THE FROBLEM OF APPROXTMATION

The problem is to provide a smooth represeniation of a three-dimensional curve which approximaies
given data so as (o yield a given shape. Usually the data is given interactively in the form of a guiding
polyline determined by comtrol poines Pylxy, ve, 2ph Pilx. vk . . oo Py, By 2, ). We would like to find
a curve which approximates the shape of this guiding polyline (see Fig. 2-8).

Fj FE,

Fig. %8

Bézier-Bermstein Approximation
Using the Bermstein polynomials, we form the parameiric corves:

x() = ¥ 5 BE, (1)

il

P i =T vBELD  0=i<I
faasifl

Ar) = iﬂ:,ﬂf:r..{n

where M) is called the Bésier curve.
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Properties of the Bézier-Bernsiein Approximation
There are four basic properties:
. The Bémer curve has the same endpoints as the guiding polyline, that is:

Py = P0) = [0, J/{0). 0)] P, = P{1) = [x(1}, 11}, o(1}]

2. The direction of the tangent vector at the endpoints Py, P, 5 the same as that of the vector
determined by the first and last segments FP,, F, | P, of the guiding polyline. In particular
Py = n- (P — Pyl [ie, x(0) = mx; —xg), Mi0) = iy, — o 2(0) = miz; — 2] and P{1) =
me (P — Py

1. The Bézier curve lies entively within the convex hull of the guiding polyling. In two dimensions,
the convex hull 15 the polygon formed by placing a “rubber band™ about the collection of points

4, Bégzier curves are suited to interactive design. In fact, Bézier curves can be pieced together 5o as to
ensure continuous differentiability at their juncture by letting the edges of the two different
guiding polvlines that are adjacent o the common endpoint be collinear (see Fig. 9-9).

Fig. 9-9

Bézier-B-Spline Approximation
For this approximation, we use B-gplines (see Fig, 9-10)

X = i.‘ﬁ.ﬂ‘,_“{ﬂ
=0

Pi): Hfl=i.mﬂ‘,,{t}l D=r=m-m+1
1=

A = 3 2,B,ul0)
i

The mth-degree B-splines 8, (1), i=10..... n, are defined for ¢ in the parameter range [0, 0 — m 4 1]
The knot sct &, ... fyeme) 15 Chosen to be the set 0,... .0, L2, ... .o=mnun=m+1..... n=rm4 1l

S .
i mal

This wse of repeated knots ensures that the endpoints of the spline coincide with the endpoints of the
guiding polyline (Prob. 9.6).

Since the knot spacing is uniform, we can also use an explicit form for caleulating the B-splines {Prob.
Q. 10},
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Py

Fig. 9=10 Cuhic Bézier H-splime,

Closed Curves

To construct a closed B-spline curve which approximates a given closed guiding polygon, we need
only choose the knots oy, .. ., berms 10 b cyelic, e, [0,1,...,m,0,1,...]. S0

sy =l =0 gz =t =1 Caprag = 1§

In practice, the quadratic and cubjc B-splines B, ; and B, 4 are the easiest to work with and provide
enough fAexibility for use in a wide range of curve design problems,

Properties of Bérier—B-Spline Approximation

There are five bagic properties:

1. The Bézier-B-spline approximation has (the same properties as the Bézier-Bemsten approximia-
tion; in fact, they are the same piccewise polynomial if m = n. This includes the properties of
agreement with the guiding polygon and the tangent vectors at the endpoints and the convex hull
property.

2. If the guiding polyline has m + | consecutive vertices (contral points) which are collinear, the
resulting span of the Bézier-B-gpline will be linear. So this approximation allows for linear
sections to be embedded within the curve,

3, The Bézier-B-spline approximation provides for the local control of curve shape. T a single

control point is changed, portions of the curve that bie far wway are not disturbed. In fact, only
m - 1 of the spans are affected. This iz due to the local nature of the B-spline basiz functions.

4. Beémer—B-splines produce a closer fit to the guiding polygon than does the Bézier—Bemstein

Approximation,
5. The Bézier—B-spline approximation allows the use of control points P, counted with muliiplicifies
of 2 or more, That is, P, = Py, = - = Py for k = 1. This resuliz in an approximation which is

pulled closer toward this control point. In fact, if the point hos multiplicity m + 1, the curve will
pass through it
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2. Bézier—H-spline approximation. In parametnie form this is expressed as
L. ]

sz oy =3 3 x B 8 )
i=fj=in

~

s £ { M o) =3 3 w8, (58, {0

p=0 f=1

2is )= 3 ¥ 2B, (908, {1

=il f=l
where D < s <mi—a+ | and 0 < 5 = 5= i + |, The knoi sets for = and ¢ used to define the B-
splines B; (s} and B, 4(r) are determined as in the one-dimensional case.

Cuadratic approximation occurs when x = § = 2. Cubic approximation occurs whena = F=3. In
general, quadratic or cubic B-splines are most often used. For both these methods, the construction of the
guiding net (by locating the control poinis Pﬁ.} 15 left 1o the oser

Interpolating Surface Patches

Instead of using a given set of points F; 1o construct a given surface, the process of interpolating
surface patches is based upon prescribing boundary curves for a surface patch and “filling in™ the inderior
of the patch by interpolating between the boundary curves.

[. Coons surfaces. For this technigue, a patch is determaned by specifying four bounding curves,
denoted in parametric vector form as Pls, 0), Pis, 1), A0, 0, and P(L 0L O = 5, ¢ = 1 (zee Fig.
9-12)

Fig. 9-12

The (linear) Coons surface paich interpolaiing the boundary curves can be writien in vector
form by using lmear interpolation (or blending):
s, 1) = P(s, 001 — 5} = P(s, L)t 4+ PO, )1 — 5) 4 P{L, 1hs — P{0, O)1 — sX1 = 1)
— B0, VWL — 53 — PY1, O)sf1 — £} — P, List
(The subtructions are required so that the interpolators betwesn comer poinis are not counted
twice.) This idea can be extended fo define moee general surface patches.

2. Lofted surfaces. Lofting is used where the surface to be constructed stretches in a given direction;
an example 15 the hull of a shap.
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Sphere
From Fig. 9-14:

f4y s =R

Fig. 9-14 Fig. 9-15

Ellipsold
From Fig. 9-15:

Onie=shiscted Hyperboloid
From Fig. 9-16:

%
|
Tl "t
]

Two-sheeted Hyperboloid
From Fig. 9-17:
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Fig. 9-16 Flg. 9-17

Elliptic Cylinder
From Fig. 9-18:
P
a =
When a = & = R, the cylinder 15 a circular cylinder of rads &

1

Elliptic Paraboloid
From Fig. %1%

Fig. 9-1%
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Hyperbolic Parboloid
From Fig, 9-20:

Fig. 9-20 Fig. 9-21

Elliptic Cone
From Fig. 9-21:

2y
ZTE=T
When a = b = K, we have a night cireular cone, If we restrict z so that z = 0, we have the upper cone.
Mote that, except for spheres and ellipsoids, the mathematical definition produces a figure of infinite
extent. To use it for computer graphics, we must specify bounds for the saurface in the form of bounding
chppimng planes having the form z = &,

%11 EXAMPLE: TERRAIN GENERATIOMN

We show two different ways (o generate a irigngle mesh (e, a polynomial net consisting of wangles)
that models the random peaks and vallevs of & mountainous landscape,

Midpoint Displacement
This is a recursive approach that begins with one or more triangles over the fermain arca [see Fig.
B-22(a)]. We use the midpoints of the edges to subdivide each tnangle into four smaller ones. The
miEdpodnts are randomly elevated to produce a nugged appearance [see Fig. 9-22(01). The coordinates (x,,,
Vopr 2 ) Of the midpoint of the edge hetween Pilx), v, 2y) and Py, . 22) are calculated as follows:
X, = {II — X ],.l'E
Ya=0r=mli+r
Tw =2 — 2,)f2
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1%} [1:F]
Fig. 9-22

where r 15 a random displacement that can be expressed a5 the product of a8 random mumber 0 < A < 1 and
a function of the projected length (omto the x—z plane) of the edge. For example, if the fonction is
Fipy = p/2, then the midpoint can be elevated by no more than half of the projected length of the adge.
The subdivision process terminates when all edges project o a preset threshold or shorer length.

Since the original vertices are ol moved and each midpoint i3 displaced only once, the resulting
terrain tends 10 muintain the overall shape of the initial model. On the other hand, deep vallevs that look
unrealistic may appear along the orginal edges. We can alleviate this problem by adding a random
displacement to the vertices as well as the midpoints at each recursion stage. The tradeoff here is less
cantrod over the shape of the final terran structure.

Brovwnian Distribution of Disks

In this approach we superimpose o grid onto the termin area and initialize & counter for each grid cell
{see Fig. 9-23 for a rectangular area that can be represented by a two-dimensional counter array). We then
ramdomly move a circular disk over the area. At each disk position we increment the counter for every grid
cell that is covered by the disk. Afier a while the counter values form an elevation profile of a pile of
randomly placed disks. Each elevation value describes the height of a point/vertex above the correspond-
ing grid cell. A trangle-mesh model of the resuliing terrain can thus be constructed by first connecting
each vertex to its four neighbors [analogous to the four neighbouring pixels in Fig. 3-1B(a)] to form a
quadrilateral-mesh and then adding diagonal edges 1o divide cach quadnlateral into two thangles.

" v (elevtion)

e -
s v
il

s

Fig. 9-23
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For example, the gray-scale image in Fig, 9-24 represents the values ina 512 = 512 counter array. The
values are oblained using a disk of radius 25 afier 6000 random movements, each of which is a step of size
3 forward or backward and simultaneously a step of the same size (o the lelt or {0 the dght. Whenever the
center of the disk moves beyond the image boundary it is reset to the middle of the image. The counter
values are nommalized so that the maximum count comesponds to white in the image. The resultant
triangle-mesh is viewed in Fig. 925 using perspective projection, looking from a point near the lower-right
corner of Fig. 9-24 towards the center (with hidden surfaces removed and visible surfaces lit by a light

SOUTCE ).

Fig. 9-15
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Solved Problems

Bepresent a cube by using an explicit vertex list.
SOLUTICN
Lizang the notation i Fig 7-12, one possihle representation 15
F = [48CDAFEDCHEFGHGE]
Mote the vertex repetitions in the list F and the repetition of edge FE as EF.

Represent a cube by using polyvgon listing.
SOLUTION
Referring v Fig, ¥-12, we form the vertex list
¥V = {ABCDEFGH]

The faces of the cube are polypons (which, in this case, are squares) Py, ..., Py, when
Py = [ABCD Py = [4RGF]
Py = |CDEH] Py = [BCHG)
Py = [ADEF) P, = |EFGH)

Mo the cdge repetitions encouritered in drawing the polypons. For example, pelypons P, and Py share the
edpe DE,

Show that the sth-degree B-spline basis functions 8, ,(x) satisfy

B xy=0 if x<§ of X> .

SOLUTION

Since the Bspline basis functions B, {x) ame defined recursively in terms of the lewer-order B-splines
B, yixhand B, ,_(x) of degree a — |, we shall indicate only the first step of a general induction argument.
Therefore, we illustrate what happens for the first-degres B-apline 8, ,(x).

Mow supposc that v < 1, Then alsox < £, ,, 30 81 x the zem-degree B-splines have the values B, j(x) = 0
and B, 4(x} = 0, From these values we find, in turn, that B, ;{x} = 0.

Mow suppose that the koot set is sonrepeating. Let x = 1, Then B ,5) = 1, but B, o{r) = 0. So

Bl = (1) + L) = 0

Tl i 2 T Pl

Thus 8 jixh = 0if x < &, Smilar arguments show that 5§, (x5 = 06 1 = 6.

Let Py, 0), Py(1,2) Po(2,0h Pald, —1) Pyd, 10), and Py(5, 5) be given data points, If
imerpolation based on cubic B-splines is used to find a curve interpolating these data points,
find & knot 22 &, ..., & that can be used to define the cubic B-splines,

SOLUTION
The kaot set can be chosen sccording to one of two schemes, With m =3 and w = 5:

1. Choose

heh=heh==1{<i) and =t == =6(=1)
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The remaining two equations can be chosen to satisfy prescribed boundary conditions at g, = 0 and xy = 5.

Show that the knot set used in constructing the Bézier—B-spline approximation to a guiding polyline
guarantees that the endpoints of the spline coincide with the endpoints of the guiding polyline.
SOLUTION
Far an m-degree Bézier—B-spling approximation, the knot set used is
0. 01,2 . a—mue—m+le—m4+1,..., H—m4 1

[E——
el mil

Let Pyixy, ¥y- 2y} be the first comtrol point of the gading polylme and FPix,, .. z.) the last. Mow
wlt) = 30, 5,8, (1) with similar expressions for (1) and s(r). We wish to show that

0] = xg, W) = . (D) = 54 and zp=lj=x.fr=1l=p.sn=1=z,
Let us restrict ourselves to m = 2 (quadratic} B-splines, Then the knot st s

0,000,238, ,0=2a=1Lr=1n0-1
By Mpo Do By g B oo P s a2 T Tags

Since # 3(x) is nonzero only over the interval 1, < x < £, it follows that & 3(0) is nonzero only if i = 0, 1,
and 2. So then

w0} = 'E]-Iiﬂu'.lm} = gty (0] + x84 {0) + xpfy A0}
To calculite By ;, ising the definition and the convention that § = 1, we obtain
Eu_z[m = -E|_|{m anid H1_|fﬂ'} = E'z_um] and ﬂ'z,.n.{n:l =1
So By ;(0) = 1 {compare with Prob. 9.3).
To cabeulawe 8, (0}, vsing the definition

2 2 .
B 40 = EB.!.I[D] and By () = 307 & 510} arut Bipll) =0 since 0= =1
B0 e Iu'utﬁl_!{ﬂl:l = [, I a srmilar manner, we find B]_El:l:l} =, Thus, .::[I:I:I =1, and the same furlb-:_v:rhdf

coordinabes
Similar caboulations show that xiw = 1} = x, W = 1) = ¥, and zln — 1) = z,.

Find the linear Coons surface patch that interpolates the curves of Fig. 9-26.

£y
i !
F
F
Pirm /
(=1, 00 P00,
!
'
¥
Pl ] Pis 1)
(0, 0, 0
£

Fig. 9-26
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Fig. 9-27

(K5, €)= [(1 + ficoa 2ms, {1 + ¢}sin2ms, 4]

Supplementary Problems

Rezpressnt a cube using an explicit sdge listing,

[CHAR %

Find an explicit representation for lnear (degres 1) B-splines im the case of uniformly spaced knots, ie.,

figg — = L

Forthe knot sel £y = 1, 8 = 2, ... & = |, caleulsie B, (5.5)
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4
=il

P fxa wa 22b
Py (x v Tab

Pydan v Ll

Filxi. v &if

(e il
Fig. 10-1
projection of the fransformed object is equivalent to a perspective projection of the orginal object (s2e Fig.

10-2). This is done with the use of the perspective to parallel transform T, (Prob. 10.2).
If the omginal object lies in the nomalized perspective wvigw volume (Chap. 8). the sormalized

perspective fo parallel ransform

e |
I |
NT, = 1 -
o 0 — F
In_:lr I_Ir
0 1 L]
E
Parallel projection of
| this confiparation is
| |ABCDERD]
Parspective projection of
tils eonfiguration &
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(where z; is the location of the front clipping plane of the normalized perspective view volume) transforms
the notmalized perspective view volume nto the umit cube bounded by I =x = L 0=y =1, 0=z =]
(Prob. 10.3). We call this cube the normalized display space. A crtical fact is that the normalized
perspective to paralle]l transform preserves lines, planes, and depth relationships.

If our display device has display coordinates A = V, application of the scaling matrix

H 4 o0
i & 0
Il':'||‘:|.|' 1= o 0 1 0
i o o1

transforms the normalized display space 0 =x =1, 0=y<=1, 0=z =<1 onto the region 0 =x = K,
D=y=VF, 0=z=1 Wecal this region the display space. The display transform DT,

DT, = Sy v - AT,

transforms the normalized perspective view volume onto the display spoace.

Chipping must be done agrinst the normalized perspective view volume prior to applying the transform
NT,. An alternative to this is to combine NT, with the normalizing transformation ¥, (Chap. 8), forming
the single transformation NI, = NT; + Noo. Then clipping is done in homogeneous coordinate space. This
method for performing clipping is not covered in this book.

We now describe several algosithms for removing hidden surfaces from scenes contaiming objects
defined with planar (ie., Aa), pelygonal faces. We assume that the displays transform DT, has been
applied (il o perspective projection is being used), so that we always deal with parallel projections in
display space.

0.2 Z-BUFFER ALGORITHM

We say that a point in display space is “seen™ from pixel (x, ¥) if the projection of the point is scan-
converted to this pixel (Chap. 3). The Z-buffer algorithm essentially keeps tack of the smallest z
coordinate (also called the deprh value) of those points which are seen from pixel (x, ). These Z values are
stored in what is called the £ buffer.

Let Z,.:(x, ¥) denote the current depth value that is stored in the Z baffer at pixel (x, ¥). We work with
the (already) projected polygons P of the scene to be rendered.

The Z-buiffer algorthm consists of the following steps.

[. Initialize the screen to a background color, Initialize the Z buffer to the depth of the back clipping
plane, That is, set

AL A for every pixel (x, v)

2, Scap-convert each (projected) polygon Fin the scene (Chap. 3) and during this sean-conversion
process, for cach pixel (x, ) that lies inside the polvgon:

(2} Caleulate Z{x, v}, the depth of the polygon at pixel (x, v).

(B IF Eix, ¥) = Spds, ¥, 500 2yl v) = Zix, v) and set the pixel value at {x, ¥) to the color of
the polygon P at {x, ¥). In Fig. 10-3, points P, and £, are both scan-comverted to pixel (x, ¥);
however, since 1) < 15, P will obscure Py and the P, z value, z;, will be stored in the 7
buffer.

Although the Z-buffer algorithm requires Z-buffer memory storage proportional to the number of
pixcls on the screen, it docs not require additional memory for storing all the objects comprising the scene.
In fact, since the algorithm processes polygons one at a time, the total number of objects in a scene can be
artrtrarily large.
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Fig. 10-3

1.3 BACK-FACE REMOVAL

Ohbject surfaces that are orientated away from the viewer are called back-faces. The back-faces of an
opagque polyhedron are completely blocked by the polyhedron itself and hidden from view. We can
therefore identify and remove these back-faces based solely on their orientation without forther processing
(projection and scon-conversion) and without regard o other surfaces and objects in the scene,

Let N = (4, 8, C) be the normal vector of a planar polygonal face, with N pointing in the diréction the
palygon is facing. Since the direction of viewing is the direction of the positive z axis (see Fig. 10-3), the
polygon is facing away from the viewer when C = 0 (the angle between N and the r axis is less than 90¢°).
The polygon is alse classified as a back-face when C = 0, since in this case it is parallel to the line of sight
and its projection is erther idden or overlapped by the edge(s) of some visible polygon(s).

Although this method identifies and removes back-faces quickly it does not handle polygons that face
the viewer but are hidden (partially or completely) behind other surfaces, 1t can be used as a preprocessing
siep for other algorithmes,

14 THE PAINTER'S ALGORITHM

Also called the depeh sort or priovity algorithm, the painter’s algonithm processes polygons as if they
were being painted onto the view plane in the order of their distance from the viewer, More distance
pelygons are painted first, Mearer polygons are painted on or over more distance polygons, partially or
totally ohscuring them from view. The key to implementing this concepd 5 to find a priority ordering of the
polygons m order o determing which polygens are to be painted (L., scan-converted) first.

Any atternpd at a priority ordering based on depth sorting alone results m ambiguities that must be
resolved i order to comectly assign pnonties. For example, when two polygons overlap, how do we decide
which one obscures the other? (See Fig. 10-4.)



CHAR 10] HIDDEN SLTRFACES 20

’.rf Prigection of polygons
. Projection of polygons
[ — A B C and D

Pand

() [ By
Fig. 10=d Projection of opague polygons,

Assigning Priorities

We assign priortes to polyrons by determining if a given polygon P obscures other polygons. If the
answer is no, then P should be painted first. Hence the key test is to determine whether polygon P does mot
ebscure polygon Q.

The = extent of a polygon is the region between the planes =z = =, and = = = (Fig. 10-53). Here, =
is the smallest of the : coordinates of all the polygon's vertices, and 2, is the largest,

Similar definitions hold for the x and v extents of a polygon. The intersection of the x, v, and = extents
is called the exfent, or bounding box, of the polygon.

Testing Whether P Obscures

Polygon P does not obscure polygon O if any one of the following tests, applied in sequential order, is
gl =N

Test 0:  the z extents of P and () do not overlap and z;  of (J is smaller than zp_ of P. Refer to Fig.
10-6.

Test |:  the y extenis of P and ' do not overlap, Refer to Fig. 10-7,
Teat 2:  the x exients of P and O do not overlap.
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Fig. 18-7

Test 3:  all the vertices of P lic on that side of the plane containing {? which is farthest from the
viewpaint, Refer 1o Fig. 10-8,

Test 4:  all the vertices of {J lie on that side of the plane containing P which 15 closest to the
viewpoini. Refer to Fig. 10-9,

Teat 5:  the projections of the polvgons P and F onto the view plane do not overlap. This is checked
by comparing each edge of one polygon against each edge of the other polygon to search for
intersections.

The Algorithm

. Sort all polygens into a polygon list according to 2. (the largest 2 coordinate of each polygon's
vertices). Starting from the end of the lisi, assign priorties for each polygon P, in onder, as
described in steps 2 and 3 (below),
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For g given screen area, we keep a potentially visible polygons list (PVPL), those in categones 1, 2,
and 3. (Disjoint polygons are clearly not visible.) Also, note that on subdivision of a screen area,
surrounding and disjoint polygons remain surrounding and disjoint polygons of the newly formed areas.
Therefore, only contained and intersecting polygons need 10 be reclassified.

Removing Polvgons Hidden by a Suwrrounding Polygon

The key to efficient visibility computation lies in the fact that a polygon is not visible if it is in back of
a surrounding polygon, Therefore, it can be removed from the PYPL. To facilitate processing, this hist is
soried by 2., the smallest 2 coordinate of the polygon within this area. In addifion, for each surroundimg
polygon 5. we also record its largest = coordinate, 2, .

If; for a polygon P on the list, zp =z (for a surrounding polygon 5), then P is hidden by 5 and
thus is not visible. In addition, all other polygons after P on the list will also be hidden by §, so we can
remove these polygons from the PVFL.

Subdivision Algorithm

. Initizlize the area io be the whole screen,

2. Create a PVPL with respect to an area, soried on o, (the smallest z coordinate of the polygon
within the area). Flace the polyvgons in their approptiate categories. Remove polvgons hidden by a
surnounding polygon and remove disjomt polypons,

1. Perform the visibility decision tests:

(@) If the list is empty, set all pixels to the background color

(b} If there i exactly one polygon in the list and it 15 a clascified as intersecting (category 2) or
comained {category 3), color (scan-convert) the polygon, and color the remaining area to the
background color

() Ifthere is exactly one polygon on the list and it is & sumrounding one, color the area the color
of the surrounding polygon.

{d) 1f the area is the pixel (x, ), and neither a, &, nor ¢ applies, compute the = coordinate =(x, ¥}
at pixel (x, ¥) of all polygons on the PVPL. The pixel is then set to the color of the polygon
with the smallest 2 coordinate.

4,  [fnone of the above cases has occurred, subdivide the screen ares into fourths. For each area, go to

step 2,

10.7 HIDDEN-LINE ELIMINATION

Although there are special-purpose hidden-line algorithms, each of the above algorthms can be
modified o eliminate hidden lines or edges, This is especially useful for wireframe polygonal models
where the polygons are unfilled. The iden is to use a color mule which fills all the polvgons with the
background color—say, black—and the edges and lines o different color—say, white. The use of a hidden-
surfuce algoriihm now becomes a hidden-line algonthm.

10.8 THE RENDERING OF MATHEMATICAL SURFACES

In plotting a mathematical surface described by an equation = = Fix, ¥, where x,;, <x = x,__. and
Faiing ZV = Viggy» We could use any of the hidden-surface algorithms so far descnibed. However, these
gencral algorithms are inefficient when compared to specialized algorithms that take advantage of the
structure of this fype of surface,

The mathematical surface s rendered a5 a wireframe model by drowing both the x-constant curves

z = Ficonst, y) and the y-constant curves z = Fix, const) (see Fig. 10-16). Each such curve is rendered as
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a polyline, where the illusion of smoothness is achieved by using a fine resolution (i.e., short line
segments) in drawing the polyline (Chap. 3).

Choose an M = N plotiing resolution

The corresponding = values are z; = Fix;, »). An zconstant polyline, say x = x, has vertices
P:.{-I_Ill.'rll]'\- LT P_'l.":l:_,u-}"l.':l
Similarly, the ¥y = v, polyline has vertices
{115 T ) B ety 1)

Choosing a view plane and a center of projection or viewpoint Cla, b, ¢}, we create a perspective view of
the surface onto this view plane by using the transformations developed in Chap. 7. S0 a point
|x. ¥, Fix, ¥}] on the surface projects to a point (p. g) in view plane coordinates. By applying an appropriate

2D viewing transformation (Chap. 5), we can suppose that p and ¢ line within the horizontal and vertical
pletting dimensions of the plotting device, say, i = F pixels.

The Perimeter Method for Rendering the Surface

Each plotted x and y constant polyline outlines a polygonal region on the plotting screen (Fig. 10-17),
The algonithm is based on the following observations: (1) ordering—ithe 3- and y-constant curves (i.2.,
polylines) are drawn in order starting with the one closest to the viewpoint and (2) visibiliy—we draw only
dulpmtufﬂ}:p-nl}'lutlhatumd:llmp:ﬁmntﬂufnﬂ previously drawn regions (Fig. 10-18). One
implementation of the visibility condition uses a min—max array A, of length #f (that of the plotting device),
which contains, at each horizontal pixel position /, the maximum (and,or minimum) vertical pixel value

Fig. 10-17 Fig. 10-18
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Solved Problems

Given points (1, 2,00, Py(3, 6,20), and (2.4, 6) and a viewpoint C(0, 0, —10), determine
which points obscure the others when viewed from .

SOLUTION
The line joining the viewpoint C0, 0, <10) and point 21, 2, 0) is (App. 2)
x=i jp=N 7= =104 10¢

To determine whether P03, 8, 20) lies on this line, we see that r = 3 when ¢ = 3, and then e { = 3, x = 3,
y =6, and z = 0. S0 Py lies on the projection line through C and P,

Mext we determing which point is in front with respect to C. Mow C ocours on the lipe pt £ = 0, P ocours
at t = 1, and Py oceurs af r = 1. Thus comapring § values, P) is in front of Py with respect to O that is, P
obscures Py

Wi aow determine whether Py(2, 4, &) is on the line, Mowx = 2 whenr =2 and then v = 4, and 2 = 10,
Thus Py(2, 4, 6) is nod on this projection line and so if sether obscures nor is obscured by Py and Py,

Construct the perspective o parallel transform T, which produces an object whose parallel
projection onto the xy plane vields the same image as the perspective projection of the original
object onto the normalized view plane z = o/{c] + &) (Chap. 8, Prob. 8.6) with respect to the
origin as the center of projection.

SOLUTION

The perspective projection onto the plane = = o Nel + b} with respect to the origin is (Chap, 7, Prob.
T4k
L]
il z, [1]
0 0 =
g0 o 1 0

= a0 a

£ =z
Define the perspective 1o parallel ransform T, o be
z 0 L1 0
@z 0 i
T=lg o ! -
| — ) | — Iy
a o i {

{where z = z, is the location of the normalized front clipping plane; see Chap, 8, Prob. 8.6),
Mow, applying the perspective o parallel transform T, to the point Plx, y, z), we produce the pomd

A 2T
;?l(: - | —.5.})
The paraliz]l projection of (¥ onto the 1y plane prodsces the pomnt
EnF
—.—. 1
¢(770)
So ¥ and P produce ihe same projective image. Furthermore, T, transforms the normalized perspective view

volume bounded by y =z 1= -, y=5 y==5z=1, and 7 = | to the reclangular volume bounded by
===l =, y==n,i=0adz=1.
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10.3  Show that the normalized perspective fo parallel transform NT), preserves the relationships of the

104

original perspective imnsformation while transforming the normalized perspective view volume
imto the unit cube.

SOLUTION
From Prob. 10.2, the perspective to paraliel transform T, transforms a pownt Pz, v, z) 10 9 pomd

o Rt
E(: "z '=u—=_r1)

The image wider parallel projection of this point onto the xy plane is
L LY
E{ =" DJ

[
-
o

The factor z, can be set equal 1o | without changing the relation between points & and (¥,

The matrix that tranaforms Fu.}-.ﬂmﬂupu.img(g.;-;]jff} is then
16 0 o
61 0 0
T, = o 1 —z
l—x 1-x
00 0

In addivion, this mairx vrenaforma the oormalized perspective view volume o the rectangular view
vnh.tmcl:q-tmdndl::.r:x Lae==l,pel,y==lz=0,and z= 1.

We next translade this wiew volume so that the corner point (=1, =1, 0) translateés to the ongin. The
translation mstrix that doss this is

1 001
010 |
Tos=1p 0 10
oo

0

The new region i & volume bounded by x =Lx =2, y = =2 .
Finally, we scale in the x and v dirtctﬁmh}lafacur-]mrjulh:fmalvw vodurme is the unit cube: 5 = 0,
x=ly=0py=1 =0 and = 1, The scaling mairix is

b ooo
i a0
IFI.‘T.'I.'E.'I = 1] 3 1 10
i 0o 1
The final normalized pérspective 1o parafle] transform is
i} ! i}
o i ! i
*""1} ol SI.’J.I.’!.I T||.:|.|:|| ' r.: = 00 ] —&y
| == ;_:" | = Elr
oo | i

Why are hidden-surface algorithms needed?
SOLUTION

Hidden-surface algorithims are needed to determine which objects and sorface will obscure those objects
and surfaces that are in back of them, thues rendering 4 more realisiie image.
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Mext, the algorithm keoks at each individual pixel in the 2 row. At pooel {a, 1), the depth values (x values)
of each polygon found abowve are compared to find the polygon having the smallest = valee st this pixel The
color of pinel {w ) is then set to the color of the corresponding pelypon al this pixel

1011 Using the four pixel display and the graphics objects A4 and B from Prob. 10.8, show how the basic
scan-line method would display these objects.

SOLUTION
First we imitialize the display to the color v of the back clipping plane (lpcated a1 2z = 1),

i
Frame buffer =

. 3t y=0 The scan-conversd representations of A and & contain pixels on the y = 0 scan line,

(o} Setx = Companng the z values of 4 and & at pixel {0, ), we find that the amaller 2 value ia 0,
which belongs to 4. Thus 4 is seen from pixel (0, OF; that &, pixel (0, O) 5 221 to the opder of A,

L ¥ | ¥
0 }a 1_5
|
() Betx = 1. Since A is not seen from pixel (1, 0) while B is seen, the color of pixel (1, 0) is set to that
af 8.
i ¥
i ]

2, Bety e |, The scan-converied representations of 4 and B contzin pixels on the v = | scan line,

{@] 5Setx =1 Because A is not seen at pixel (0, 1) while & is seen, pinel (0, 1) is 322 to the color of B,

i}k
0 |la|k
o 1

(£} Setx = 1. Both 4 and B are “scen™ from pixel (1, 1), The depth of A ot pixel (1, 1) is 0, that of & is
{. Thus A s visible at pinel {1, 11,

I b |a
nfalhb
il 1

This represents the final image displayed.
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The algorithm proceeds as foliows,
. Iwifiglization,
(@) We mitalize the screen display to the color v of the back clipping plane (located at z = 1)

Frame buffer =

(&) Set the scan line 1o ¥ =0,
[I. ypscon loop, Activate edges that satisfy Floon(y,,,) = 0 and sort on x

Edges X
BB, 0
Ay i
&5, 2

M, r-scan oo

(o} Process edge § 8, First invert the appropriste [N/OUT flags in the PL;

Polygon Equation INJOUT flap Color
A =y ouT a

L = r=1
] r=4 M L]

The pumber of active polygons is one. Thos B is visibbe a1 pixel (0, 0) and all pixels on scan
line v = 0 between edges 5, B, and A, 4; are et to the color of B. In our case, this 35 just the pixs]
(0, o).

o | &
o1

(@) Now we repeat step (a), processing edge 4,4, We update the PL:

Polygon Equation [N/OUT flag Calor

A

L I
i

e |

B H IN b

The mumsher of sctive pobygons i 2. At pixel (0, ) the depth value (2 valoe) of polygon A is 0 and of
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polvgon & is L Thus polygon A i3 visihle at pizel (0, 0), so the color is set W o

Ly |y

ofa|»

o 1

Since A is a line, set the IN/OUT flag of line 4 to OUT. The color of all pixels between edges 4,.4;
and 8,8, are determined by the remaining active polygpon 8.

Polygon . INOUT flag
PL = A — OuUT —
B — g —

This means fhat we set the color of pixed (1, 0) to b

| ¥ ¥
jal|hk
a1

(@) Again, we repeat siep (o), processing edge B8, We update the PL:

Pohrgon - is/0OUT flag
PL = A ouT -
B — OuUT _

The narnber of netive polygons is 0.
(&) Having processed B8y, the last active edge, we procesd:
(1) Allthe v, valoes are equal 1o 2, These values scan-convert (s8¢ Prob, 10,8) 8o 1, The present
¥ acan line value is 0. S0 no edges are removed,

(2)  Imcrementing x by 1 m

BB |0
A |4
BBy | 2

(3) Sety=1,

Mo wee repeat sieps 11 and 111

I, pesean loop, With ¥ = 1, no additional edge is activated. The result of sorting active edpges remaing &
above,

Itl. x-sean ooy
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{@} Process edge 5, 5,. We updaie the PL:

Polygon INJOUT flag
PL=| 4 —_ ouT -
B — I —

The number of active polygons is 1. Thus & i visible at pixed (0, 1) and all pinels between edge
BB, and A A, on scan line y = | are set 1o the color of 8.

(@) MNow we repeat step (a), processing edge 4,4, We update te PL:

Palygon | I OUT flag
|
PL = A | — M -
B | — N -

There are two active polygons. A depth companison at plee] (1, 1) shows that 7 is set o be color of
Ii.l'lﬂ'-"pd;.

| bl a
0|a
o1

Since A is a line, we set the IN/OUT flag of 4 w0 OUT, And we procesd immediately 1o the next
edge at the same pinel location,

{a) Apain we repeat siep (), processing edge F,H,. We update the PL:

Palygon Equatian WU flag Color
A ¥ aGuT a
= =10
B i ouT b

The number of active polygons becomes 0.

(k) Having processed the last active edge 5,5, we remove those edges for which y,,, cquals the y
scan value of 1. Since this includes all the edges, e, p = 2. the algorithm stops.

10.18 What is the underlying concept of the painter’s or the priority algorithm?
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1,19

10,20

10.21

122

SOLUTION

The painter’s algorithm sorts polygons by depth and then paints (scan-comverts) each pobygon onto the
screen starting with the most distanes polygon.

What difficalties are encountered in implementing the painter’s algorithm?
SOLUTION

First, there is the question of what the “depth™ of a polygon is, especially if the polygon is tilied cut of
the xy plane. Second, if two polygons hivee the same depth, which one should be pamted fisst?

If polygon (2 has the same depth value as polygon P, which polygon has prionity, that is, which is
painted first?

SOLUTION

We perform tests 0, 1, 2, 3, 4, 5 (from Sec. 10.4, under *Testing Whether P obscunzs 07) in order. If any
ane of tbe e 18 e, we say that polygon P doss st obscare polypon (0, and w0 polygon P is paimted first.

If mone of the tests s froe, we have an ambiguity thal muost be resolved.

We resclve the ambiguity by switching the roles of P and (0 and the reapply tests 0, 1, 2, 3, 4, and 5. If
any one of these fests & troe, O does ot obscure polvgon P and so polygon & 8 paioted first,

If again none of the tests is true, polygon § must be subdivided into two polygons ) and (0, using the
plant containing polypon P as the dividing plane [Fig. 10-42)].

Apply the painter’s algorithm o display objects 4 and B in Prob, 1005,
SOLUTION

We first find the depth valwes 7, for 4 and B, Since £ s the largest z value from all the polygon's
vertices, then for 4, z, =ﬂ,andi'i:rrﬂ,:,'_=%.ﬂm&mingnu:m.mmmupﬂh*ﬁnnﬂhunhig}m
depth vales than pobygon A.

Mext, we assign prionities by applyving tests 0 through 5 inordier (see Sec. 1004} In test 0, the = extent of B
is.z".m=},.z"m=#_1'1!:enmtﬂf.-! B, =05, =0

Thus the z extents of 4 and & do oot overlap and 2, is smaller than z . Thus st 0 is rue, and s0 we
scan-comvert polygon & first:

1 e !lb

Frame buffer =
b |& | B
g 1

Mext, we scan-corven polygon A (e, we “paim™ over polvgen B

1 |h|a
0 |alb
a 1

This is the final imape displayed in the frame buffer

What are the basic concepls underlying the subdivizion algorithm?
SOLUTION

Figst, s that & polygon is seen from wilhin a given area of the display sereen if the projection of that

polygon overlaps the green area, Second, of all polygons that overlap & given screen area, the one that is
visible i this area i the one W front of all the others, Thind, if we cannot decide which palygon & visible {in
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that of &

Begion 3: pixel {0, 13,
Z. Fu;!mmg thie PFPL, Since A 15 d.ixjui.nl! from s reghm, wit have

Polygon Toin Category
PVPL ==

B Surmmunding

[

3. Fizibility decision, From test {2), there is only one polygon 8 and it is surmounding. So region 3 is colored

b
I | &
e |b
o 1
Regon 4: pixel {1, 1),
2. Forming the FFPL.
Palygon £ Canegody
MVPL = A 0 Intersecting
& ! Surmounding

3 Visibility decision. Having applied tests (o) through {¢), we noa apply test (o). The = coordinate of 4 =t
pizel {1, 1) 15 less than that of B, Thus pixel (1, 1] i de1 to the color of A:

This is the final image in the frame bufles,

10.24 How can we use the special stacture of a convex polyhedron to identify its hidden faces for a
general parallel or perspective projection?
SOLUTIOMN

Suppose that on each face of the polyhesdron there i an outwand-pointing normal vector N, attached &t a
point P of the face (Fig. 10-23). For each face of the polyhedron, let the line-afsight vecior 1. be the vectar
pointing from the face fo the viewer. For a parallel projection, this is the direction of projection from the object
to the projection plane. For 8 perapective projection, it is the vector PC from the nomal vector aptached at
point P to the viewpoint &t point O (Fig. 10-23%
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Color and Shading
Models

mis indistinguishable from a true record of the light energy coming from the real scene, i has
t challenge to find effective and efficient computational models for constructing such

11.1, we first outline the basic relationship between light (the physical stimulus) and the
color. This leads fo an international standard for the specification and measurement of colors,
derstanding of the widely used RGB color model. In Sect. 11.2, we use a well-known
mic the effect of objects being It by Light sources (A more elaborate illumination model 1s
. 12}, In Sects. 11.3 and 11.4, we describe several useful technigues for shading polygon-
for depicting delicate surface details (surface texture).

NIy COLOR

ble light, is electromagnetic energy in the 400 to 700 nm, i.e., nanometer (10~ meter),
e of the spectrum (see Fig. 11-11L A typical light has its energy distributed across the
the proportions are described by a spectral energy distnbution function P(4) (see Fig.
light or reproduce a given light with physical precision one would need to duplicate
istribution, which is commonly referred to as spectral reproduction.

hand, it has been shown through carefully designed psychophysical experiments that
stral distribution does not necessarily lead to difference in perception. Less stringent
reproduce light o the extent that the reproduction causes the same color sensation to an
bserver as the original. These resulis make it possible o specify or describe light in ways
prually oriented and are easier to handle.

229



230 COLOR. AND SHADING MODELS [CHAR 11

4 A (nm)

AM radio

FM radio & TV
Microwayve

1000 | Infrared

| Visible light

T

30 { Ultraviolet

Meray

Fig. 11-1

Erergy
density

PO

A (num)

Fig. 11-2

Basic Characteristics of Light

Light can be chamcternized in three perceptual ferms. The first one 13 brightness, which cormesponds to
its phsical property called fominamce. Luminance measures the total enengy in the hght. It 1 proportonal
to the area bounded by P4} and the A axis in the 4040 to 700 nm range. The area can be calculated by

=

The higher the luminance, the brighter the light 1o the observer.

The second perceptual term s Aue, which distinguizhes a white light from a red light or a green Light.
For a light with an idealized spectral distribution as shown in Fig. 11-3, hoe cormesponds 1o ancther
physical property called the domingnd wavelength of the distrbution.
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T Pk - Dominant wavelength
.t-.___.-"
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|
f Pure color
-‘.I
While
i (nm)
41 T
Fig. 11-3

The third perceptual ferm s samnation, which describes the degree of vividness, For example, teo red
lights may differ in luminance/brightness, and they may differ in degree of vividness {e.g., pure/satorated
red ws. pale/unsaturated red). Saturation corresponds to the physical property called evciiation pawiiy,
which is defined to be the percentage of luminance that 15 allocabed 1o the dominant of pure color
component (see Fig. 11-3). In other words, we have

pure color

gaturation = .
pure color + white color

Although this simple scheme has s weaknesses (eg., not all hghts have an identifiable domdnant
wavelength), it bridges the physical aspects of light and the perceptual classification of color in a
straightfiorward fashion,

The Trichromatic Generalization Theory

Let 5 be a given light or color stimulus. The effect of § (the color sensation of a human subject
observing &) can e matched by combining light from three primary sources in appropriate propostions:

S=r.red + g - green + b - blue

In other words, the given light and the proportional mix of the three primanes look the same to the
observer.

Mote that the theory stands with any triple of primaries. Three light sources form a triple of primaries
as long as none of the three can be expressed as/matched by a lincar combination of the other two, We use
red, green, and blue in the formula mainly because they are the standard choice in color-matching
experiments (with red = 700 nm, green = 546.1 nm, and blue = 435.8 nm), Moreover, these three colors
roughly coincide with the wavelength values that cause peak response from the thres types of color-
sensitive receptor cells in the retina, a membrane that lines the back of the eye’s wall, These receptor cells
are called f, &, and p cones, respectively. They are most sensitive to light in the wavelength range of
2440445 nm, & 335545 nm, and g 5T5-580 nm. Another kind of receptor cells called rods are color-
blind but are very sensitive to low intensity light.

A eritical aspect of this to-stimulus approach is that, in order to match all visible colors, the weight
values sometimes have to be negative. For example, when red, green, and blue are used as primanies the
value of &, the weight of the blue component, may be negative. A negative & value means that the effect of
the: given stimubus 5 cannot be matched normally throogh the additive process. But if 8 is mixed with some
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blae light, then the effect of the mix can be maiched by & linear combination of red and green (Intmtively,
we move the term & - blue to the other side of the equation).

CIE X¥Z Color Model

Looking for a good compromise between the simple and effective tri-stimulus method and the fact that
np naturally occurring primaries can be used 1o maich all visible colors, the Intermational Commission on
HNumination (Commission Intemationale de I'Eclairage, or CIE) defined three imaginary (non-realizable)
primanes, vis., X, ¥, and Z, in 1931, They were the result of an affine transformation applied to theee real
primaries to ensure that every single-wavelength light or spectral color can be expressed as a linear
combination of the CIE primanies without any negative weight.

The relative amounts of X, ¥, and Z that are needed to describe each spectral color are shown in Fig,
114 in the form of three color-matching functions x(4), ¥4}, and 2(4). In order to match a color light of
wavelength A, the proper proporiion is found by the line 4 = 4; intersecting the curves representing the
three functions, In addition, Wi} matches the liminous efficiency of the human eyve and corresponds to the
eye'’s response fo light of constant luminance,

L

ELY

A
ok

1 A {nm)

4K 4 (eL]] i

Fig. 114

To describe an arbatrary light § with speciral distribution P{4), we “add together™ the respective
amounis of the CIE primaries thal are necessary to maich all the speciral components of 5. This is done
with

X = .I:J PUMG) di, ¥ = 1] PUW) di,  Z =¢j PLAY(iN
£ A ad

where k is a light-source-dependent constant. The resultant X, ¥ {which carnics luminance information doe
o the way w4) is defined), and Z are used as weights o express 5§ as follows:

S=X-X+Y-Y+2-Z

CIE Chrematicity Diagram
Mow we define x, v, and = by normalizing the above weights against X + ¥ + £
U SOV AR S
X+¥V4+Z X+¥4 L X442
Clearly x + v+ 2z = |, and we have 2 = | — x — y. The two variables x and v represent colors by grouping

them into sets, each of which has members that differ only in luminance.
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Thus the X1¥ coordinates of a composite RGE color can be expressed in terms of a transformation M-

X B 0 w00 B X, Xy T C,o0n 0 R
FleM|G|=]|¥»G % wnG Gl=|¥ Y % v, 0 G
2 B Erf,. z; Eg. zﬁf‘ﬁ B I Ip Ip i} ] FJ, B

There are two different ways to determine C,, C, and C. One is to use a photometer 10 measure the
uminance levels ¥, ¥,. and ¥, of the red. green. and hlue colors at their maximum intensity brightness,
respectively, Then

G = Y/y. c-:' = rl'"ll-v.l" Cp = Yalvy

The other is to find/measure the XYZ coondinates (X, ¥, Z.) of the monitors white color
(R ={=8=I1) Using these we have

X, LA C,
Fel=1» ¥ »n||C
£y Z ':_r_ ke Cﬁ

We can now solve for O, Ere' and O,
If M, i5 the ransformation for menitor 1 and M, is the fransformation for monitor 2, then a color
(R, G, ) on monitor 1 can be matched by a corresponding color (R;, Gy, &) on monitor 2;

R, R,
G, | = MM | G
B, B,

provided that (8y, 05y, B;) 15 within the color gamut of monitor 2.

The NTSC ¥IQ Color Model

The NTSC (Mattonal Televiston Systemn Committee) YD color model 15 used for commercial
television broadcasting in the US. It iz defined to be a linear trunsformation of the RGE color model,
with the ¥ component purposely made to be the same as the ¥ in the CIE XTZ color model. Since ¥ carries
luminance mformation, black-and-white television séis can use i to display color images as gray-scale
pictures, The mapping between BGE and Y70 15 as follows:

¥ 0299 0587 0014 R
I|=|05%% -0275 -0.321 ]
Q2 0212 —-0523 031 B

The quaniitics i the transformation matrix are obtained using the standard NTSC RGE phosphors whose
chromaticity coordinates are & (0067,0.33), & (021,071}, and 8 (0.14, (.08). It is also assumed that the
white point 15 at x, = 0.31, v, = 0316, and ¥, = 1.0,

11.2 THE PHONG MODEL

This 15 & widely used and highly effective way to mimic the reflection of hight from object surfaces to
the viewers eye. It is considered an empineal approach because, although it 15 consistent with some hasic
principles of physics, it is lrgely baged on our observation of the phenomenon. It is also referred to as a
local illmmination medel because 1is main focus is on the direct impact of the light coming from the light
source, On the other hand, & global ilfumination mode! attempts to include such secondary effects as light
going through transparent/franslucent matenal and light bouncing from one object surface to another.

Now consider a point light source [see Fig. 11-8{a)], which iz an idealized light with all itz energy
coming out from a single point in space (4 reasonable approxination to a bulb), Our eye is at the viewpoint
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ia) L]

Fig. 11-6

looking at point (' on the surface of an object. What should be the color of (7 In other words, what should
be the color of the light reflected mio our eye from ¢ (in the direction of vector V)?

There are two extreme cases of light reflection. The first is called diffise reflection. In this case lipht
energy from the light source (in the direction of —L.) gets reflected /bounced off equally i ali directions
(see the small arrows forming a half-circle /hemisphere). We also want the energy level of the reflection 1o
be a function of the incident angle & (between L and surface normal N). The smaller the angle, the higher
the reflection (kind of like bouncing a ball off o wall). The mathematical ool we use to achieve these is o
have the reflection proportional to cos(d).

The second case is called specufar reflection. It attempts to capture the charactenistic of a shiny or
myirror-like surface, Were the surface in Fig. 11-6{a) a perfect mirror, energy from the hight source would be
reflected in exactly one direction (the direction of vector R). Since a perfect mirmor is nonexisient we wani
to distribute reflected energy across a small cone-shaped space centered around R, with the reflection beimg
the strongest along the direction of R {Le., ¢ = 0) and decreasing quickly as ¢ increases [ses the bell-
shaped curve in Fig. 11-6{b}]. The mathematical means for modeling this effect 1s cos'(p), where the
parameter & provides for a convenient way to vary the degree of shininess (k = 1 for a dull surface and
k = 1040 for a mirror-like surface). For a given scene we can find out the amount of specular reflection in
the direction of ¥ using the actual angle ¢ between R and V.

Furthermore, the complex inter-object reflection needs to be accounted for in some way because many
surfaces we see are nod it directly by the light source, They are lit by light that is bouncing arcund the
environment, For this we introduce a directionless ambient light, which illuminates all surfaces in the scene
and gets reflected uniformly in all directions by each surface.

Thus in the Phong model, object surfaces are thought to produce a combination of ambient-light
reflection and light-source-dependent diffuse/specular reflection. Mathematically we can state the total
reflected energy intensity J as

I = Lk, + 1k cos(8) + k, coa"{p))

where [, 15 the intensity of the ambient light; [, is the intensity of the point light; and 0 = &, &, & = 1.0
are reflection coefficients thar represent the surface ability to reflect ambient light, to produce diffuse
reflection, and to produce specular reflection, respectively (e.g., &, = 0.2 means 20% reflection of ).

If L, N, R, and ¥ are all unit vectors, then LN = cos(f) and R -V = cos(e). We can write the
formula as

1= Ik, 4 Ikl - N+ k(R - VY')
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Note that the term L N is used in computing R (see Prob. 11.10). When there are two or more light
sources in the scene, their effects are cumulative:

I = Ik, + 3L (kL N+ k(R - VYY)
=

These formulas are typically used along with the 8GE color model. Thus light mtensity is in the form
of an RGE color vector, e.g., [ = (/.. L. I}). Reflection coefficients are also three-dimensional vectors. For
example, &y = (0.7, 0,7, 0.3} defines a surface that looks yellowish when illuminated with white ight, The
ambient reflection coefficient &, can simply be the same as &;. The three components of & are often made
equal since the color of the reflection of a light source is tvpically the same as the color of the light source
it=elf, When the light is white, the formula for a single poinl source becomes

I = Lk, + LikyL - N+ k(R -V))
1= Ik, + ik, L-N+kER-VF)
Iy = Ly + Lkl - N+ k(R VYY)
Figure 11-7 shows a gray scale image with 16 views of a sphere shaded using the Phong formula. The

four rows from top to bottom are calculated wsing k% = 0.5/0.1, 0.5/0.3, 0.5/0.5, and 0.500.7,
respectively. The four columns from left to rght represent & = 3, 5, 20, and 100, respectively.

Fig. 11-7

1.3 INTERPOLATIVE SHADING METHODS

Computing surface color using an illumination model such as the Phong formula at every point of
interest can be very expensive. It is even unnecessary when the image 15 used to preview the scene. To
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circumvent this problem, we apply the formula at full scale only at selected surface points. We then rely on
such techniques as color interpolation and surface-normal interpolation to shade other surface points,

Constant Shading

The least time-consuming approach is not o perform caleulation for additional surface poinis at all,
The color values of those selected surface points are used 0 shade the entire surface,

For example, a cylindrical object may be modeled by a polygon mesh as shown in Fig. 11-8(a). We can
evaluate the Phong formula using the geometric center of each polvgon and set the resultant color to every
pixel that belongs to the corresponding polvgon [see Fig. 11-8(k)].

Lap By
Fig. 11-8

Constant shading can produce good results for dull polvhedrons lit by light sources that are relatively
far away (hence the diffuse component varies little within each polvgonal face). The primary weakness of
this method is that false contours appear between adjacent polvgons that approximate a curved surface [see
the evlindrical ebject in Fig. 11-8(b)]. In addition, the specular reflection of the light source (often referred
to as the specular kighlight) tends to get lost. On the other hand, if a selected surface point happens to be at
the location of the strongest specular reflection of the light source, then the color of the corresponding

polygon will be, for the most part, significantly distorted.

zourand Shading

In this approach we evaluate the illumination formula at the vertices of the polygon mesh, 'We then
interpolate the resultant color values 1o get a gradual shading within each polygon.

For example, we use bilinear interpolation to find the color of point P inside a triangle whose vertices
are P, Py, and Py (see Fig. 11-9). The scan line containing £ intersects the two edges at points P and P,
We interpolate the color of P and the color of Py to get the color of 7. We then interpolate the color of Py
and the color of Py to get the color of P*, Finally, we interpolate the color of P and the color of P* to get
the color of P (see Prob. 11.15).

When polygons are used to approximate a curved surface, there are two ways to determine the normal
vectors at the vertices in order to get a smooth-looking fransition between adjacent polygons, The first is o
use the underlying curved surface to find the true surface normal at each vertex location. For example, the
vertices of the polygon mesh in Fig. 11-8(a) are on the surface of an underying cvlinder. The normal
vector al a point on the cvlinder is perpendicular o the axis of the cylinder and points from the axis 1o the
point [see Fig. 11-10{a)].

Om the other hand, 1t may sometimes be difficult to find normal vectors from the underlving surface, or
the polygon mesh may not come from any underlving surface. A second approach to deciding normal
wectors at the vertices is to average the normal vectors of adjacent polygons. For example, to determine
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Fig. 11-9 Fig. 11-10

normal vector N at vertex P in Fig. 11-10{4), we use the average of the normal vectors of the polygons that
meeet at P

N =DMy 4 Ny 4Ny + Ny

where N is then nomalized by dividing it by [N

Common nommal vectors al the vertices of a pelvgon mesh that approximates a cerved surface result in
eolor values that are shared by adjacent polygons, eliminating abropt changes in shading characteristics
across polygon edges. Even when the polygon mesh is relatively coarse, Gourand shading is very effective
in suppressing false contours. However, a much finer mesh is needed in order to show reasonably good
specular reflection.

Phong Shading

Instead of color values, we may also interpolate normal vectors. For example, o find the normal vector
N at point P in a tniangle (see Fig. 11-11) , we first interpolate N, and N, to get N, then interpolate N, and
N, to get N”, finally interpolate N and N” to get N,

Fig. 11-11
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This technique is relatively time-consuming since the illumination model is evaluated at every point of
interest using the interpolated normal vectors. Howewver, it is very effective in dealing with specular
highlights.

114 TEXTURE

While gradual shading based on illurmination is an important step towards achieving phobo-realism,
most real-life objects have regular or irregular surface features (e.g., wood gran). These surface details are
collectively referred to as surface fexfure. In this section we present three approaches fo adding surface
textare: projected fexture, lexture mapping, and solid fextre.

Projected Texture

Imagine putting a plain object between a slide projector and the projection screen, The surfaces of the
object that face the projector will be coversd by the propecied image. [F the image depicis wood grain then
the affected surfaces will have the intricate wood texture supenmposed onto its orginal shading.

In computer graphics, projecting texture onto an object 15 effectively the inverse of projecting an object
onto the view plane {compare Fig. 7-1 and Fig. 11-12) . We now refer to the view plane as the reference
plane, which contains a two-dimensional texture definition called the fexfure map, The projection ling that
associates point P with its image P allows the shading of P to be determined or influenced by information
in the texture map ol location 7.

, oot surface
I.'L Il..-'ﬂ-\.\._l:’:’ _7"
P i w2
Heferenie ._F|_._,'-"' ezl
plane (™. A

Fig. 11-12

The texture map is offen a synthesized or scanned image, in which case it contains color attributes.
There are several ways for the color attnbutes of P to be used to shade point 2 First, we may simply assipn
these attributes to P replacing whatever color atiributes P correnily has. The net effect of this approach is
to paint the color of the texture onto the object. Second., we may inferpolate between the color O of P and
the onginal color C of P wsing (1 = £)C 4 BC7 where 0 < & < 1.0 to come up with a new color for P The
result of this calculation makes the texture appear blended into the origingl shading. Third, we may use a
logical operation involving C and O to compute a new color for P For example, when the AND operation
i3 naed, a texture area with magenia shades will appear unaltered if the original color is white, bast it will
take on red shades if the original is vellow.

Projecied texiure is an effective ool when target surfsces are relatively flat and facing the reference
plane. On the other hand, “hidden surfuces™ are not affected, and features of the texture are distoried by the
curvature of the surfice,
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Fig. 11-14

Solid textore is often defined procedarally. The following is an example that shows the development of
o madel for wood grain, We begin by representing the most prominent feature of the material with a series
of concentric cylinders m the texture space [see Fig. 11-14{a)]) . When an object such as the parallelepiped
in Fig. 11-14(b} is placed into the texture field the object intersects the cvhinders, leaving mtersection
confours on i3 surfaces, The contours we get by aligning the object coordinate axes with the texture
coordinate axes are shown in Fig, 11-14{c). We now rotate the front end of the parallelepiped slightly to the
left about the v axis, and slightly up about the w axis. The result i5 our first approximation 10 wood grain
{see Fig. 11-15).

Fig. 11-15

We can zee that the contours on different sides are consistent with the underlying three-dimensional
structure, but they are just oo smooth and too perfect o look real, In order to incorporate some asymmetry
and mregulanty we need o bring two updates to the model, The first is to add ripples or sinesoidal
perturhations to the cylinders so the intersection comtours will have some minor and natural-looking
oscillations, The second is to tem of twist the ripples slowly along the w axis to give the coatours a skewed
appearance. An implementation of the improved cylinder mode] & shown in the following pseudo-code

procadure:;

wiondCrainipr, k)
{
float radius, angle;
radius = sqri(pr{u]’ + py));
angle = (piu] == 0) ? =/2 : arctan(pdv}/pdu]s
radius = radius + m®*sinf Mangle + r*pifw]);
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if ({intjradius % p < d)
set the components of &4 to produce a dark shade;
clse
set the components of &d 10 produce a light shade;
|

where array parameter g represents the coordinates of surface point # in the texture space, and array
parameter & 15 used to return the proper reflection coefficients for shading point P

The first instruction in woosdCirain is to determine the radius of the cylinder that intersects P The next
instruction sets the base parameter value for the sine function that delivers the ripple effects. The
magnitede of the perturbation is controlled by m, the frequency or number of ripples in a foll circle is
controlled by f and the rate at which the ripples rotate along the w axis is controlled by . Finally, we treat
wood grain az alternating bands of dark and light cylinders of period p. Within a period the two bands are
separated by threshold d. Although only two shades are shown in the procedure, the value of kd should be
made to vary based on the relative position of P within each band to produce better results (see Fig. 11-16
for a ray-traced sphere).

Fig. 11-16

Solved Problems

11.1  Assuming that the medium of interest is air {or a vacuum) express the visible band of the spectrum
in terms of a frequency range.
SOLUTION

Since frequency = speed of light/wavelength, and speed of light=3.0 x 10°m/s, we obtin the
frequency range (3.0 = 070700 = 107%) oo (3.0 = 10%)/(400 = 107%)Hz or 4.3 = 10" 10 7.5 x 10" He.

11.2  Name the three percepiual ferms for describing color and the corresponding physical properties of
light.



CHAPR 1] COLOR AND SHADING MODELS 243

11.3

11.4

11.5

1.7

SOLUTION
Brightness Tuminance, hue/dominant wavelength, sataration,excitstion purity

Derive a simple formula to calculate the area bounded by the distnbution function P4} in Fig. 11-3.
SOLUTION

Let Wand H be the width and height of the rectangular area that correspones to white, and D and F be the
width and height of the rectangular ares thet cormesponds to pure color. The arca bounded by PUA) 05
Wox 4= P

Mamve the two kinds of receptor cells in the retina and describe their basic function.
SOLUTION
They are cones for sceing colors, and rods for pereciving low intensity light.

Why did we say that red, green, and blue enly roughly coincide with the wavelength values that
cause peak response from the thres types of color-sensitive cones?

SOLUTION

The three coles have the Fn]lml.'ing typecal wu:h:n.ﬁh; redd = Tl nm, green = 46 nm, and
blue =435 8nm. Ablbough blue and green closely match the sensitive range of two types of cones,
b 440 -445mm and & 2 535 545 nm, the sensitive range of the thied type, o 575 —580nm, B sctaally
sellow, not red,

Do we have to use ¥in order to convert from chromaticity coordinates (x, v} back 10 a specific color
in the X¥Z color space?

SOLUTION
Man, TF we know Y, we can use

X=X  ¥Ye=iX  Z=
by

Presume that a momtor produces what s called the standard white Dgs with x, = 0,313,
Vo =0329, and ¥, = L0 when § = G = B = |, and the chromaticity coordinates of itz phosphors
are as gven in Sec. 11.1. Find the color transformation matrix M for the monifor.

SOLUTION
Since ¥_ = 1.0, we have
Ay =x v, =095 andd Ea=0l=x_ =y v, = 088
Use these amd the chromaticity coordinaies of the phosphors

0.951 062 029 0.15Y /C
Lo | =038 0% ooe ||,
| 088 004 042 079 )\ ¢,

Salve aml get C, = RS, Cp o= L0, and O = 1,164, Now

5L, 5,0 50 0437 02339 D175
M=|rC »C nt|=|0240 0650 0070
rC, O 50, o02E D04 0,920
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1.9

11.10
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Werify the fact that the ¥ in the CIE X¥E color mdel is the same as the ¥ in the NTSC Y10 color
il

SOLUTIOMN

Fird the tmnsformation o X¥Z for the standard NTSC RGHE display (sse Sec, 11.10. Since
Yo =031 v, = 0316, and ¥, = L0, we hawe

X, =x v, =098 amed dy =1 =x, =y, Wy, = 1184
Use these and the chromaticity coordinates of the standard NTSC phosphors

LBE] 067 021 014 LI
10 | =03 on om||c
1.184 0.0 008 0T Cy

Solve and get C, = 0.906, C, = 0.826, and ¢ = 1.432. Now
o, x50, 1,0, 0607 0173 0.200

M= wC »C nG | =029 0587 0.114

50 5,0, nly 00 0066 1117

Since the muddls row of M is the same as the top row of the matnx for mapping from BCE to ¥, we can see
that the ¥ in CIE XTZ is the same as the ¥ in NT3C FIQL

What 15 the difference between a local illumination model and a global tilumimation model?
SOLUTION

A local ilumination model focuwses on the direct impact of the light coming from the light source. On the
other hand, a global iluminstion model attempts to include such secondary effects as light going through
tramapanenl firanslocent material and light bouncing from ofe object surface bo amwller

Refer to Fig, 11-6 in Se¢. 11,2, Find a formula to compute R, the reflection of vector L with respect
io normal vector N,

SOLUTION
Introducing suxiliary vectors & and m (see Fig. [1-17}, we can write

Fig. 11-17

Simee L = &+ m, we have ¢ = L — m amd
R=m-=(L-m)=2Im-=L
Mote that m is simply the perpendicular projection of L onto N (ss¢ Prob, A2.16) and M i5 a unit vectar, hence

m = (L NN
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11.1% Refer to Fig. 11-11 and see Frob. 11,15, If the two nomal vectors al & and P are

1120

q=—— — I".=—— —_—
I 2[+EJ N 2]+2“
and pomt P 15 half way between P and P, what is N7

SOLUTION
Sioce P i in the middle of ™ and P, the laxl formuls m Prob. 11.15 for hnear i.nl!-l!rpﬂlﬂ.'l{lfl in the x
direction becomes
I
==+
2
Use it to imterpolate each component of N' and N™:

()0 ey P Ly

r
2

4 4
The magnitude of this vector ks

ERCRCR =
¥y o2 i TRNTI
Lz it to normalize the interpolated vector and get
JE JE ~.-'"E
N = grls e d+ oK

Show that when averaging or interpolating normal vectors we will get incorrect result if the vectors
are nol unil vectors (or vectors of equal magnitude].

SOLUTION

Conspder N, = Land N; = J: the average of the two s [+ J, which bisects the WF angle between 1 and
J We can normalize i o get

V1o W1

Mow if we set Ny = 2J, which has the same direction as J, the average of N, and N, becomes [+ 2J.
Clearly, the direction of this vector differs from that of N.

Asg for imterpolation we can see from Prob, 11.19 that 10 compuie a vector for the point halfway
between two given poinds we apply

o each vector compenent. For Ny = 1 and N, = J, this produces
I+ 4

which 5, after normalization, the same as N above. But, if we use N; = 21, the result of interpolation
becomies

!
I+ J

which has the direction of 14 27, i the direction of N,
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11.21

11.22

11.23
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Congider the texture-blending formula (1 — &30 + & where D < & = 1.0, Cis the original color of
the object, and O 15 the color of the texture map. Describe o simple words the resulis that
commespond to the two extreme cases: K = 0 and & = 1.

SOLUTION

The case & = 0 means v texture at all, whereas the case & = | micans painding the textare over the
original shading of the abject.

When we use the logical-operation AND o combine the orginal color of the object and the color of
the texture map, a texture area with magenta shades will appear unaliered if the original color is
white, but it will take on red shades if the original is yvellow. Why?

SOLUTION

Vianous shades of magenta can be desenbed by RGH color vegiors im the form af (o, 0, m}) , The fesilt af
white (1, 1, 17 AND (m, i, ) i8 (o, 0, ) , whereas the result of vellow (1, 1, 0) AND (5, O, o) 15 {me, 0, 0},
which represents shades of red.

See Fig, 11-19, and find the linear functions that map the normalized image onfo 3 square area of
50 = 50 in the middle of the front face of the cubic object,

ey
s s
: ) 1K
i
Fig. 11-19
SOLUTION
First find a parsmietric representation for the target arca

=8 WB=g=Ts

y=9p I=Zp=TH

=z = [l

Mote the relationship betaveen the commer points

=0 — =25 p=25
=lh—=d=75 @p=25
| — th=25 p=75
I =+ 0=175 =74

el

"
w
w
w

Subsumae these imo 0 = du+ 8 and @ = Ow 4+ I we pel
A =3, =25 C=450, and D=2%
Hence the mapping fonctions ane
them Sl 4+ 25 aiwl o= Sl 4 15

The whverse milpping Tmchions ane

& 2% e
=" ad W=y
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11.24 See Fig. 11-20. Find the linear functions that map the normalized grid pattern onto the bottom
portion {n/4 < @ = x/2) of the sphencal surface in the first octant.

iy

L f—

SOLUTION
The parametric represendntion for the target ans &
¥ = R s (1) ainfg@) 0<=f=ni2
= Roos(ap) mid < g = /2
7 = Bcos{fism p)
Note the relabonship betwesn the comer poinds

=0 w=0dl=80=0  gp=u/2
=1 w=0=@=nr/2, p=nSl
o= i), we |l = A=, o= md
i=1 w=1—=tl=nr2 p=n'4

Substitute these into 0 = dn+ 8 and ¢ = Ow + I we get
A=nfl, B=0 C==n/4, and D=gx/l

Hence the mapping functons are

The inverse napping functions are

Supplementary Problems

11.25 (iiven the distribution function ML) in Fig, 11-3, derive a formula to calculsty sanaration.
11.26 Why everyihing beoks pray or black in a dark reom where we can barely sec?
1L.27  Canowe use Z 1o comvert from chromaticity coordinates (x, v back 1o 2 specific color in the AT color space?

11.28 Whats the difference bebween the ¥in CMYand the Yin Y07
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Ray Tracing

Ray racing is a global illumination model that accounts for the transport of light energy bevond the
directflocal contribution from the light sources. Its operation is largely based on the principles of
geametnie optics. By tracing the path of light rays it is able to integrate the tasks of shading, shadow
don, hidden surface removal, projection, and scan conversion into one single computational process.
I this chapter we first introduce the fundamental concepts that underlie this elegant approach (Sect
210 W then discuss the basic ray-tracing algorithm (Sect. 12.2), the parametric vector representation of
gy (Sect 12 3), and the mathematics of ray—surface intersection {Sect. 12.4). We also present techniques
fior improving execution efficiency (Sect. 12.5), anti-aliasing (Sect. 12.6), and achieving some desired
vismal effects: (Sect. 12.7).

121 THE FINHOLE CAMERA

In theory one can take perfect pictures using a pinhole camera—a closed box with a tiny hole in the
genter of the front panel (see Fig. 12-1). The hole is 50 small that only one light ray passing through it can
girike & pasticular point on the negative, which is mounted on the inside of the back panel. As light rays
from acooss the scene expose the negative by hitting their respective target precisely, a sharp image
depicting the scene emenges,

[l'.ﬂ.gtnfﬂljm

Fig. 12-1 A pinhole camera.

Mo we place a screen between the pinhole and the object (see Fig. 12-2), causing the light rays to
mtersect the sergen. 1f we can record each light ray as it intersects the screen, we will have a perfect picture
of the objeet om the screen. Or, to put this in terms of image synthesis, if the screen resolution is arbitrarily
high and we can set the pixel at each intersection point to match the color of the corresponding light ray,
thin the image will be indistinguishable from the real scene when viewed from the position of the pinhole,

251
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1.2 A RECURSIVE RAY-TRACER

In order to construct an image hased on the pinhole-camera model we need 1o determine the light rays
that are responsible for the pixelz. We do so by following their path in the opposite direction, i.e., from the
viewpaint through the center of each pixel into the scene (see Fig. 12-3). These are called the primary raps.
If a primary ray does ool intersect any object in the scene, then the corresponding pixel is simply set to
somi background color.

. Mluemireriiom sheydees: Tew
e

- ..:\\ {Specularly) transmitied ray

T
E_.-—'_%_'] (Speecularly) refiected my

Fig. 12-3 Ray tracing.

Om the other hand, if a primary may intersects an object, then the color of the comresponding pixel is
determined by the surface shading of the object at the intersection point, Several secondary rays are used to
compute the three components of this surface shading. The first component is called the lecal contribution,
which refers to the direct contribution from the light source{s). We send a shadow may or ifluminarion ray
from the sorface point to a light source. If the ray is blocked before reaching the light source, the surface
point s i shadow (relafive 1o this light souree). The second component is called the reflecied contribuiion,
which reffers 1o the reflection of hight energy coming from another object surface (inter-ohject reflection).
This 15 determined by a (speculardy) reflected ray, a ray that represents the reflection of the prmary may with
respect fo nommal vector N. The third component 15 called the fransmitted contribution, which refers o the
transmission of light energy coming from behind the surface (ransparent object). This 15 determined by a
(specularly) ransmitted ray, 2 ray that represents the refraction of the primary ray with respect to N.

Mote that, were the object surface a perfect mirror, the specularly reflected ray would represent the sole
direction of light reflected towards the viewpoint, Also, if the object were made of perfectly homogenesous
material, the specularly transmined ray would represent the sole direction of light refracted towards the
Viewpoint,

Snell’s law determines the relationship between angles x and j (sea Fig. 12-3):

sinx) _ g
sin(ffy
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where 1, is the refraction index of the medium in which x is defined and 1, 15 the refraction ndex of the
medium in which § is defined. Althowgh the refruction index of a medium is a function of temperaiure and
wavelength, we can often use such values as 1.0 for air, 1.3 for water, and 1.5 for glass.

Employing the Phong formula o describe the local contribution, we express the mtensity [ of the light

energy represented by the primary ray as
F= Tk 4 300 gl N+ (R, - W)') + ke, +
fuel

where the ambient term now represents the portion of inter-object reflection that is not accounted for by the
term k4, which describes the reflected contnbuiion as the product of the reffection coefficient &, and the
imtensity [, of the reflected ray; the last term &, describes the transmitted contnbution as the product of the
transmission coefficient & and the intensity [, of the transmitted ray. Both &, and k; are in the range of
[, 1.0]. §, and [, are obtained recursively by treating the reflected ray and the transmitted ray as a primary
ray. In other words, we caloulate T, by evaluating the above equation af the closest surface the reflected ray
intersects, in exactly the same way as the primary ruy is handled. A psevdo-code description of the basic
ray-fracing algorithm is as follows:

ray Trace{ray, depth, color]

{
determine closest infersection of ray with an object;
if {(no infersection) color = background;

elee |
calor = local contribution:
if (depth = 1} |

calculate reflected ray,
ray Trace(reflected ray, depth-1, ref_color),
calculate transmified ray;
ray Trace{transmitied ray, depth-1, trans_color);
color = color 4 &, - ref_color + & - trans_colar;
i
}
}

This procedure takes a ray and a depth value that is greater than or equal to 1 as input, and retums a
wolor as output {typically an BGE vector, the above formula is used o compute the intensity of each
individual color component). [t treats the given ray as a primary ray and (when depth > 1) makes recursive
calls to obtain the color (ref_color) of the reflected ray and the color (trans_color) of the transmitied ray,

Figures 12-4, 12-5, and 12-6 show the results of ray-tracing a scenc consisting of three opaque spheres.
The smaller one in the front is dull whereas the two larger ones in the back are shiny. The first insage
(depth = 1) is obtained using only the primary ray amd shadow ray. The second image (depth = 2) depicts
the effect of adding reflected contribution (one level bevond the primary ray). The thind image (depth = 3)
shows the cumulative effect of twa levels of reflected contribution. In Fig. 12-7 (also depth = 3), the dull
sphere is replaced by a shiny glass sphere (a check-board floor iz also added) 1o illustrate the combined
effect of all three shading components,

123 PARAMETRIC VECTOR REFRESENTATION OF A RAY

A ray 15 nof a vector althoagh il may look like one (see Fig. 12-3). The difference between the two 15
that, while a vector is defined by ils direction and magnitade, a oy 15 determined by its directon and
starting pevint.
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Fig. 124

Fig. 12-5

We may represent 4 ray in terms of two vectors: s o specify its starting point, and d to describe its
direction (see Fig. 12-8). These two vectors are used o provide a parametric vector representation for the
ray:

il =5+ d (0= r)

where rif) denotes a family of veciors, When the tails of these vectors are placed at the origin, their heads
make up the ray.
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Fig. 12-6

: An=s+ul (==
I

-'-.
=

Ea

Fig. 12-8 Vector representation of a my.
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Fig. 12-10

Solving for f we get

_ _rll:'tl - J‘:'I.I} +-1"l|{'*"| _-"'I.I:I T zl{zl - '!I:I-:|
Ty + Vo¥a + Za2g
Introducing p = (1 — x, ) + (vg = ¥, 4+ (5 = z,)K, we can express f in vector form:

=P
- n-d

When - d =0, the ry is paralle]l to the plane (oo intersection). Otherwise, if ¢ < 0, the negative
extension of the ray intersects the plane; if ¢ = 0, the my onginates from the plane. The ray intersects the
plane only when r = 0.

Somctimes we want to further distinguish the two cases of infersecfion; intersecting the outside (front)
of @ plane versus intersecting its inside (back). The former ocours when n - d < 0 whereas the latier occurs
whenmn - d = 0.

Sphere

Consider a sphere of radius & centered af (x,, v, z.) and an arbitrary point (x, y, 7} on the sphere (see
Fig- 12-11}. Define vectors € = x 1 + v.J + 2. K and p = x + wJ + zK. The vector equation for the spherne
15

p=ci=k&

To determine if a ray lf) = s + rd infersects the sphere, we substitute s 4 rd and p and square bath
sides:

s 4 1d — e = &
Since v - v = |v* for any vector v (see Prob. A2.3), we have
& — e 4 ¥ = {5 — ¢+ +d) (5 — &+ ed)
=(s—c¢)-(s—ec+rd)+rd-(s—e+ud) (Prob. AL.20)
=f{s—c)-(s—e)+2As—eh-rd+id-rd  (Prob. AL 19}
=js - + 28 —¢) - d 4~ =&
This is in the form of a quadratic equation in 7

AR 4 2B+ C =0
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Fig. 12-11

where A = ld]*, B=(s —c¢)-d. O = |s — ¢ — R?, and the solution iz

_ BB -AC
= —
with
< no infersection
B —acl =0 ray {or its negative extension) touching sphere
=0 two (possible) mtersection points

When 5 — AC = 0 we get tao ¢ values: f; and £,. If both are less than 0, the negative extension of the ray
intersects the sphere (no intersection by the ray). If one of them is 0, the ray starts from a point on the
sphere and intersects the sphere only if the other value s positrve, If the two values differ in signs, the ray
originates from inside the sphere and intersects the sphere once. If both are positive, the ray inlersects the
sphere twice (first enters and then exitz), and the smaller ¢ value corresponds fo the intersection point that is
closer 1o the starting point of the ray.

General Implicit Surface _
Crenerally, to determine if & ray s+ 0d (5 = 1 + v J 4, K and d = x50 4yl + ,K) infersects a
surface that is represented by an implicit equation Fix, v, 2} = 0, we solve
Fig +og b+ Vg 5 Hizg) =0

for f {see Probs. 12,16, 12,17, and 12.31).

12.5 EXECUTION EFFICIENCY

Ray-tracing is time-consuming largely due to the recarsive nature of the algonithm and the demanding
task of computing ray-surface intersections, Several techniques are designed to improve execcuotion
efficiency by means of object/scene-dependent deployment of system resources,
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Adaptive Depth Control

An opaque object (k = 0) does not transmit light. A dull ebject (&, = 0) does not produce specular
reflection. In these extreme cases there is clearly no need to trace the transmitted /reflected ray, simce the
transmitted reflected contribwtion is rero regardless of the value of F/T,.

Even in a more general sitaation, say, &, = 0, the cumuolative effect of the reflection coefficienis of the
surfaces along the path of reflection can render the contribution from additional recursive steps negligible.
For example (see Fig. 12-12), if the reflection coefficients of the objects along the path of reflection are &,
k., and k. respectively, the eventual contribution of [, to the primary ray is & k,k./,. When
k, = ks =k, = 0.1, this contribution is 0.0017, {negligible in most applications).

%H

Fig. 12-12

Using adaptive depth control, the ray-tracer keeps track of the cumulative attenuation along the path of
reflection (and transmission in a similar manner) and, before working on another reflected ray, compares
the current value of cumulative attenuation to a present threshold. It continues its recursive execution 1o the
required depth only if the cumulative attenuation does not fall below the threshold. For the example in Fig.
12-12, if &k = k3 = kg = 0.1 and the threshold is 0.01, then the ray-tracer will not go beyond the second
reflecied ray because k kb, < 001

Bounding Yolume Extension

Since a ray travels along a narrow path in one specific direction, it normally misses most of the obpects
in the scene, This means that an ohject is more likely to get & “no™ answar in a ray-surface infersection test
than a “yes” answer. The purpose of this technigue is o identify objects, especially complex olbyjects, thar
are definitely not imtersectad by the ray s quickly a3 possible.

Each object or group of objects in close spatial proximity is surrounded by a capsube/bounding
volume {e.g., a sphere, a box, etc.) that permits a simple intersection check. [f the my does not intersect the
capsule, it does not intersect the object(s) inside the capsule, and no further testing involving the objectis)
18 necessary. On the other hand, if the ray does mtersect the capsule, further testing involving the enclosed
object(s) s necessary in order to reach a conclusion (“yes™ or "no”).

Hierarchy of Bounding Yolumes

The bounding volume technique can be extended o a hierarchy of bounding volumes, For example, if
# monitor and & printer are on top of & desk, we may introduce a lange bounding volume encompassing all
three objects, and three smaller bounding volumes nside the large one for the individeal objects,
respectively. Only if a ray intersects the large bounding volume it 15 necessary to go to the next level of
the hierarchy to test against the three smaller bounding volames.
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Bounding volume techniques incur two ivpes of overhead: maintaining bounding volumes and testing
against bounding volumes, It is often worth the effort when the objects are complex and are not loosely
distnbuted across the scene (see Prob. 12.200.

Spatial Coherence/Spatial Subdivision

This techmique is based on the observation that only objects that are in the vicimity of the path of a ray
may be intersected by the ray, objects that are away from the path do not have anvihing to do with the may
{and should be ignored In mtersection testing).

We subdivide the scene space into regions (see Fig. 12-13 for a 2D illustranion]) and associate objects
with the regions in which they appear. In other words, each region is linked to a list of objects that appear
in that regior. Simce the regions are typically regulary spaced and aligned with the coordinate system
axes/planes, only o minimum amoont of computation is necessary 1o identify the regions that are
intersected by a given ray (see Prob. 12.21). The actual test for ray=surface inlemsection is then performed
onby with the objects that appear in the idenfified regions,

ENN
ﬁ‘o _‘0‘

Fig. 12-13

Furthermore, we follow the ray from one region to the next and perform intersection tests as we enter
cach region (since an object may be associated with more than one region, care should be taken 0 avoid
repeating imtersection tests with the same object), Once an intersection point (closest to the starting point of
the ray) is identified with the objects in the current region, there is no need 1o move forward into other
reons.

The overhead for spatial subdivision is mainly the need to preprocess the scene in order to assign
obpects to regions. The technigque 15 complementary to the bounding volume approach in that it is quite
capable of dealing with objects that are scattered around the scene.

126 ANTI-ALIASING

Rayv-irucing depicts a continuous scene by taking discrete samples from the scene. Hence the aliasmg
artifacts associated with scan-conversion (e.g., jagged edges, dropout of small paris/objects) are also
present in ray-traced images. The following are some anti-aliasing techniques that can be incorporated inio
the ray-tracing process o alleviate the problem.

Supersampling

Each pixel is divided into subpixels (see Chap. 3, Fig. 3-27) and a scparate primary ray is sent and
traced through the center of cach subpixel. The color/intensity values of the primary rays for the subpixels
are then combined (averaged) to produce a valoe for the parent pixel.
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Adaptive Supersampling

Supersampling often drstically increnses the computational burden of my tracing. In this approach we
send one ray through the center of a pixel and four additional rays throogh its comers. If the five ravs return
similar colors the pixel will not be subdivided (it probably corresponds 1o a smoothly shaded area in the
sceneh. Only if the refumned colors are sufficiently different do we subdivide the pixel (it probably covers
both sides of an edge) into 2 » 2 subpixels. Each subpixel is then handled in the same way, and the process
terminates when a preset level of subdivision is reached,

Stochastic Supersampling

The effect of supersampling can often be enhanced with stochastic or distnibuted ray-tracing. In this
approach we deviate from using the fixed (sub)pixel grid by scattering the rays evenly across the pixel area
in & random fashion. A typical way to achieve this is to displace each my from its normal position in the
gnd (see Prob, 12.24),

12.7 ADDITIOMNAL VISUAL EFFECTS

Various techniques have been developed o achieve cerain desirable visunl effects. Some methods
below are applications of disfributed ray-tracing, which means that we scatter mys around with respect to a
certiin parameter in the my-tracing process (recall that in stochastic supersampling we displace rays from
their normal position in the pixel grid).

Environment Mapping

A shiny (mirror-like) object reflects the surrounding environment. Instead of ray-tracing the three-
dimensional scene 1o obtain the global reflection, we may map a picture of the environment onto the ohject
{sse Fig. 12-14). The object is typically placed in the middle of an enclosure such as a cube, cylinder, or
sphere, with the environment map attached to the inside of the enclosing surface (facing the object). The
color of & pixel is then a function (e.g.. average by supersampling) of the arca in the environment map that
comresponds to the pixel.

Clearly this s only an approximation to ray-tracing the three-dimensional scene. The quality of the
mapped reflection is dependent on the size (relative to the enclosure) and shape of the object. However,

Figg. 12-14
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environment mapping is often faster, and it is partcularly useful in creating the illusion of a compuster-
generated shiny object amidst a real-world scene (which of course cannot be ray-traced).

Soft Shadow

Ray-traced images of scene involving fixed poini-lights are characterized by the harsh edges of the
shadow arcas. However real lights are not mathematical points and they cast soff shadows, which consist of
an wmbra area surrounded by a penumbra area (sce Fig. 12- 135}

Li

Fig. 12-15

I order o produce soft shadows we model a light source by a reglon, called an area Nght, The arca is
subdivided into subareas or zones. Shadow rays are then distributed to these zones via random selection
(with equal probability for each zone or weights that favor rones that cormespond to higher iotensry
values),

Blurry Reflection

To get a blurry reflection of the surroundings on a glossy (not mirror-like) object, we distribute the
reflecied rays, This can be done by displacing a reflected ray from the pogition of its mirror reflection by a
small angle. The distdbution of the angle ig subject o the same bell-shaped reflectance function that
poverns specular highlights (see Fig. 11-6).

Translucency

The difference bebween transparency (specular fransmission) and translucency is somewhat analogous
fo the difference berween specular reflection and burry reflection, To achieve the effect of light going
through transhicent material, we distobuote the transmiiled rays by displacing each from the position of
gpeculer transmission by o small angle. The distribution of the angle is subject to a iransmittance function
similar to the aforementioned reflectance function. Furthermore, we may atiénuate the transmitted miensity
to account for the loss of energy.

Muotion Blur

A fast-moving l:Ih_IE'I:T tends io look blurry in a photograph (especially if the photo was faken with & low
shutter speed). To mimic this phenomenon we distibute rays over tme, In other words, we predetermine
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1.9

12.10

1311

12.12

t = sini g, — ooslfim

_ sinifi)
" sinfx)

{d + coalx)m) — cos{{Tin

Determine if a ray intersects a plane that is paraliel to the xy plane.
SOLUTION

The equation for such a plane i z = ¢ where ¢ 5 & comstant [T & ray does inlersect the plane, the
intepsection point & at (x;, ¥, o) In order io find x; and ¥, we solve the following for &

i+id =gl +vd+eK
With 5 = x 1+ pd + 2, K and d = x40 4 pyd + 3 K, we have

I+ iy =K
Vot g=»
LtEy=¢

When zy = 0, the my 15 parallel 1o the plane (no miersection), When z, = ¢, the mry ongnates from the plane
(no meersection), Dtherwise, we caloulate ¢ wsing the third equation
g —I‘_

Zg

I =

If ¢ = O, the negative extengion of the ray intersects the plane. On the other hand, if ¢ > 0, the my itsslf
micreects the plane and the coondinates x; and ¥, of the intersection point can be caleulated from the fisst o
equatinns.

Determine if a ruy intersects a rectangular region defined by x40 X Ve 800 ¥op 10 the xy plane.
SOLUTION

First determmine if the ray miersects the sy plane (se¢ Sect. 12.4 under *Coordinate System Plane™ ). If nat,
the mry does mot imtersect the region. Citherwise, find the coordinates x;, and y; of the miersection point. If
K 3 = xoand v <y = v the ray iversects the region; otherwise it does ol

Determing if a ray intersects a frangular (or convex pelvgonal) region in the xy plane.
SOLUTION

Firat determing if the ray intersects the xy plane {se¢ Sect. 12.4 undeér *Coordinate System Plane™ ). If not,
the ray does not imdersect any region in the plane, Otherwise, find the coondinates x; and ¥, of the niersection
i, The poant & mside 3 mamgular or comvex polyposal segion iF it is on/inside all bounding edaes of the
TEgian.

Mow focus on just the e plane (ignore £} To test if the intersection point {x, ) 5 inside or outside an
odpe in the plane, we choose a point on the edge (e.g., one of its endpomis) and define an outward normal
vetar o thai points to the outside of the edge (see Fig. 12-17). We also use the chosen poin fo define vector v,
and the intersection poiat to define veetor v, We have

=0 [z, w) 18 outsude the edge () = B07]
n-{v,—v){ =i [z, ) is on the adge (= 907)
= {} {x;. ¥ i5 inside the edge (i = 907)

A unit square is placed in the xy plane with one comer af the orgin and the diaponal comer on the
positive y axis [see Fig. 12-18(a)]. Determine if a ray emanating from (0, 1, 2) going in the direction
of the negalive z axis infersects the square.
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Fig. 12-17

.1, 1)

L (1

Fig. 12-18

SOLUTION
Froan the given condition we hirve
s=J+ 1K and d= <K

Sincez, =2# 0,z = =1 wihand ¢ = =5z = 2 > 0, the ray inlersects the 1y plane (gee Sect, 12.4 under
“Coordinate S}Ell.'-l'l'l F'Imu:"] Using x, = 0, xg =0, 3, = 1, and vy = 0, we get

n=04+2=x0=0 and p=1+2=0=1

To determine if the intersection point 15 inside the square, we may follow the solution for Prob, 12,10,
Alt:rrnﬁwl:,', we may perform a coordinate transformation from system xyz to 'z’ n onder 10 align the = and
¥ axes with the sides of the square [see Fig. |2-18(5)). This requires a 45° rotation of the xyz systemn with
rc-.r.pm o the £ axis (or the origin if we ignore the = dimension). The square 15 mow bowmded by x5, =0,

Fope = 1i ¥ominy = [ and v, = 1 i the pew coordinate svstem, where the coordinate of the intersechon poant
are (see Sect 4.2)
' o en 2
1 = xpens(d5T) 4 g Endl ) = %
¥ o= —x, sin(45°) 4 3, eosld57) = ?

Since

Lig = = Tygy and Faie = W = Froas

the iy does intersect the sguare.

Let m=14J+ 2K be the normal wvector of a plane that passes through point Fy (1, 1,0}
Determing il a ray with 8 = =21 +J + 2K and d = 1 — K intersects the plane,
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The (implicit) equation for a sphere of radius R centered at the origin is XX +3* +22 — R =0,
Determine if a ray 5 + rd intersects the sphere.

SOLUTION

Lets = g0 + pd + o, K and d = x50 + pd 4 74K, Substitute x, + &g, ¥, + 0y, and 2, + &2, for &, ¥, and
z, respectively:

{.1-|+1:r,:|:rE + (v, + g.-]! +|:2"+.u'}: - =0
Expand and regroup terms:
(v + ¥a + 7406 + 2xgxg + prg H A2 G ¥+ - F =0

e+ 2 dr+ s -RP =0

This matches the quadratic aquation derved in the text (see Sect. 12,4 under “Sphere™), with the center of the
sphere heing set e (0, G, 0).

The (implicit) canonical equation for an elliptic paraboloid is ' +* — z = 0 {sec Chap. 9, Sect.
910, Fig. 9-19). Determine if a ray s + ad intersects the paraboloid.

SOLUTION

Let 8 = 5] + pd 4 oK and d = syl + yol + 55K, Substituie x, + &g, ¥, + vy, and z, + &4 for x, ¥, and
I, respectiveby:

0% + gl + Oy + gl = (5 +52g) =0
Expand and regroup ferms:
(a + al + (2agr + Dy — 20 + (5 +2 —2) =0
When the ray is paralled to the = axis (i.e., xy = 0 and py; = ), the equation degenerates inti
—;,.r+xf +_'.'|! —g =10
From this we can find

[ LRAN -
L4
where
< 0 ray's negative extension intersects paraboloid
it =10 ray"s starting point on paraboloid
= 0 ray intersects parabodoid
Oiherwise, we can rewrite the guadrtic equeiion as
Af 4 B4+ C =10
whiete

A=g+yy B=log+dy-zn  C=x+y-3
amdl fhe solatiom for the equation i (note 4 & 0]

P X
a 24
If & = 44C = 0, the ray does not intersect (or touches) the parabalosd. If 5 — 44C = 0 and ¢ = 0, the ray
intersects {or touches) the pamboloid ance, If BY — 44C = 0, we get two ¢ valoes; 1) and &, IF¢) < 0 and
ty = 0, the negative extension of the ray miersects the parabolodd (no intersection by the my). IF one of the o
values is 0, the ray starts from a poind on the paraboloid and infersects the parsboloid only if the other value is
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ry Trace(ry, depth, color)
1

if {depth = 1) codor = Mack;
else |
determmine clogest intersection of ray with an object;
if (oo intersection) color = hackground;
glsa |
color = bocal contribmation;
calculate reflected ray;
ray Trace{reflected ray, depds-1, ref_cobor),
caloulate transmitbed ray;
rayTrace (transmitted ray, depth-1, frans_color);
valar s cokor + & - ref_cobor 4 & - trans_color;

12.29 Refer to Prob. 12,7, and convert y = Xx — o fo parametric vector represertation.
1230 Determine ifa ray Entersects the v plane,

123 The implicit equation for a cylinder of radius K along the z-axis is * + 3 — B = (. Determine if 2 ray 5 + od
intersects the cylinder,

1232 Show that the solution to equation 4° 4281+ C =1k
(— -8B+ B - AC

A
and the solution to cquation 4r* 4 Bt + C =10

=8 = AT
24

are cssentially the same.



APPENDIX 1

Mathematics for
Two-Dimensional
Computer Graphics

The key 10 understanding how geometric objects can be described and manipulated within a computer
graphics system lies in understanding the interplay between geometry and numbers, While we have an
mnate geametric intuition which enables us to understand verbal descriplions such as line, angle, and
shepe and descriptions of the manipulation of objects {rotating, shifting, distorting, etc.), we also have the
pamputer’s ability to manipulate numbers. The problem then is to express our geometric ideas in numeric
fiorm &0 that the computer can do our bidding.

A courdipate system provides a framework for translating geometric ideas into numerical expressions.
W start with our infuitive understanding of the concept of a two-dimensional plane.

ALl THE TWO-DIMENSIONAL CARTESIAN COORDINATE SYSTEM

In & two-dimensional plane, we can pick any point and single it out as a reference point called the
origin. Theough the origin we construct two perpendicular number lines called axes, These are traditionally
labeled the x axis and the v axis. An orientation or sense of the plane is determined by the positions of the
positive sides of the x and v axes, [fa counterclockwise rotation of 90° about the origin aligns the positive &
@xis with the po=itive v axis, the coordinate system is said to have a right-handed orientation [see Fig.
A=l etheryise, the coordinate system is called lefi-handed [see Fig. Al-1(8)).

The svstem of lines perpendicular to the x axis and perpendicular to the v axis forms a rectangular grid
over the twosditncnsional plane. Every pomt P m the plane lies at the intersection of exactly one line
perpendicular io the x axis and one line perpendicular to the y axis. The number pair (x, v) associated with
the point P 18 callcd the Cartesian coordinates of P. In this way every point in the plane is assigned a pair
of coordinates (scc Fig. Al-2).

Measuring Distances in Cartesian System

The distance berween any two points P, and P, with coondinates (x;, v, ) and (x5, ;] can be found with
the formula

D= 'i"l[*é — & (s [ .1'1]'1

273



Hidden page



APFFENINX 1 275

€

Fig. Al-3 Fig. Al

EXAMPLE 2. Eefer o Fig, Al To find the angle &, we use the Law of Cosines:
-5 .
F = 4P Do or sz so = 10821

The anghe formed by two imemsecting lines can be measured by formuing a toengle and apphving the Law of

Lasines,

Drescribing a Line in Cartesian System

The line is a basic concept of geometry. In a coordinate system, the description of a line involves an
equation which enables us to find the coordinates of all those points which make up the line. The fact that a
lizse is straight is incomporated in the quantity called the slope m of the line. Here m = tan i, where 0 is the
angle formed by the line and the positive x axis.

From Fig. A1-5 we sec that tan § = Ay/Ax. This gives an aliernate formula for the slope: m = Ay/Ax.

EXAMPLE 3. The slope of the line passing through the points Fy(—1, 2) and P,{3, 5) iz found by
Avy=5-2=3 Ar=3—-(-11=4
5 m = Ay/Ax = | The angle # is found by mnf = m = 5 or § = 36,87

Fig. A1-5 Fig. Al
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=1 r=0

Fig. A1-7

Al.l THE FOLAR COORDINATE S5YSTEM

The Cartesian coordinate system is only one of many schemes for attaching coordinates 1o the points
of a plane, Another useful system 15 the polar coordinate system. To develop it, we pick any point i the
planc and call it the origin, Through the origin we choose any ray (half-line) as the polar axis. Any point in
the plane can be located at the intersection of a circle of radius r and a ray from the origin making an angle

fi with the polar axis (see Fig. Al-8).
(3, 9
, e

Fig. Al-8
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The polar coordinates of & point are given by the pair (#, ). The polar coordinates of a point are pot
unigqué. This is becanse the addition or subtraction of any multiple of 2x (3607) 10 & describes the same ray
as thot described by &

Changing Coordinate Sysiems

How are the Cartesian coordinates of a point related to the polar coordinates of that point? I (r. 0) are
the polar coordinates of point P, the Cartesian coordinates (x. v} are given by

f=ropsfl y=rsinld
Conversely, the polar coordmates of a point whose Cariesian coordinates are known can be found by

¥

T ﬂ':arr:ranj—;

ALY VECTORS

Vectors provide a link berween gecmetric reasoning and arithmetic calculation. A vector is represented
by a family of directed line segments that all have the same length or magnitude, That iz, any two line
sepments pointing in the same direction and having the same kengths are considerad 1o be the same vector,
regardless of their location (see Fig. A1-%).

/://

Fig. A1-9

Properties of Vectors
Vectors have special anthmetic properties:
I. If A is a vector, then —A 15 a vector with the same length as A bot poinfing in the opposite
direction,
2. If A is a vecior, then £A i85 a vector whose direction 1s the same as or opposite that of A,
depending on the sign of the number &, and whose length is & times the length of A. This is an
example of scalar multiplication.

3. Two vectors cin be added together to produce a third vector by using the parailelogram method or
the head-fo-tail method. This s an example of vecior addition,

In the parallelogram method, vectors A and B are placed tail io tadl. Their sum A + B is the vecior
determined by the diagonal of the parallelogram formed by the veciors A and B (see Fig. Al-10)

In the head-to-tail method, the tail of B is placed at the head of A, The vector A 4+ B is determined by
the line segment pointing from the tail of A to the head of B (see Fig. Al-11).

Both methods of addition are equivalent, but the head-to-tail is easier to use when adding several
VECTOTS.
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Al4 MATRICES

A matrix is a rectangular armay or table of numbers, armnged in rows and columns. The notation a, is
used to designate the matrix entry ai the intersection of row § with column § {see Fig. Al-15)

Codumnn

[
-

Row i

Fig. Al-15

The size or dimersion of a matrix is indicated by the notation m x n, where m is the number of rows in
the matrix and # is the number of columns.

A matrix can be used as an organdzational tool to represent the information content of data in tabular
form. For example, a polvgonal figure can be represented as an ordered armay of the coondinates
of its vertices. The geomefric transformations used in computer graphics can also be represented by
matrices.

Arithmetic Properties of Matrices
Examples of these properties are as follows.
1. Secalar mudriplication. The matrix £A is the matrix obtained by multiplying every entry of A by the
mumber k.
2. Matriv addition. Two m » n matrices A and B can be added together 1o form a new m = n matrix
C whose emtnies are the sum of the comesponding entries of A and B. That is,
ey =y + by

3, Muatrix multiplication. Anm » pmatrix A can be multiplied by a p > n matrix B to form an st % n
matrix C. The entry ¢ is found by taking the dot product of the § row of A with the J column of B
(see Fig. Al-16). S0 e, = (row i) - (column /) = an by + aghy + - - + @by, Matrix malti-
plication is nof commutalive in general. So AB £ BA. Mainx multiplication is also called
Dy comoalenation.,

A B [
Columa | i
Rowi fa, a; o, - L by i iy
by
‘."' -
»

Fig. Al-16
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10y {10y 11402 1040.1Y_ {1 0
””“(-1 I) (z 1)‘(-2-1+1-1 -1-n+|-1)‘{n :)

80 MA = AM = L. Thus M must be A7,

ALS FUNCTIONS AND TRANSFORMATIONS

The concept of a fseciion is at the very heart of mathematics and the application of mathematics as a
tool for modeling the real world, Stated simply, 2 function is any process or program which accepts an
input and produces a unigue output according 1o a definfte rule. Although a function is most often regarded
in mathematical terms, this need not be the case, The concept can be usefully extended to include processes
described in nonmathematical ways, such as a chemical formula, a recipe or a prescription, and such
related concepts as a computer subroutine or a program module. All convey the idea of changing an input
to an output. Some synonyms for the word function are operator, mapping, and ransformation.

The quantities used as input fo the function are collectively called the domain of the function. The
outputs are called the rarge of the function. Various notations are used to denote fanctions.

EXAMPLE 11. Sonst examples of functions sre:

1. The pqu.u!il:ln_,l"[:rl =1 + 2+ 1 is & numenical fmetion whose donmin consists of all real numbers and
whose nge consists of all real mumbsers greater than or equal o O

2. The relationship T{W} = 2V is a transformabion between vectors. The domain of T is all real vectors, as is
the range. This function transforms each vector info 8 new vector which is twice the orginal one.

3. The expression Hix, ¥} = (x, —v) represents a mapping between points of the plane, The domain consists of
all points of the plane, as does the tange, Each individual point is mapped fo that point which is the reflection
of the onginal point abeut the x axis,

4. H A is a matrix and X is a column matrix, the colamn matrix Y found by mubEplying A and X can be
regarded as a function ¥ = AX

Graphs of Functions

If x and y are real numbers (scalars), the graph of a function y = f(x) congists of all points in the plane
whose coordinates have the form [x, Fix}], where x lies in the domain of /. The graph of a function is the
curve associated with the function, and it consists of an infinite number of points, In practice, plotting the
graph of a function is done by computing & table of values and plotiing the resulix, This gives an
approximation o the actual graph of f.

EXAMPLE 12. Plot five points for the function y = +* over the interval [—1, 1].

v -1 - 0 ] |

x 1 i o } |

Plotting the points (x, ©* ) caleulated in the table and joining these points with line sepments gives an approximation o
the actusl graph of y = 1%, See Fig. Al-T for the plot of the graph.

The ploting resolution is determined by the number of x values wsed in plotting the graph. The higher the
ploting resolution, the better the approximation,
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(€) D= =5 — (=F +[-2 —(=DF = J(=2F +(-1F = /5
() L:=,'."[z—q}}lﬂtl—1]1=.,|.-"2?+{—|]’=-..f'3

Denive the equation for a straight line (see Fig, Al-5).
SOLUTION

A sraipght line mever changes direction, We determine the disection of a line by ithe angle 8 the line makes
with the positive x axis. Then at any point Py on the line, the angle formed by the line and a segment through
P parallel to the r axis is also equal to . Let Pylxy, yg) be a point an the line. Then if Plx, y) represents any
point an the line, drawing the right tRangle with hypotenuse PP, we find
F =
x _IU
The quantity tan f 15 called the slope of the Lne and i raditonally denoted by o

We rewrile the equation as

tanfl =

- A
A ar m= <
I— iy Ax

(The term Ay is often called the “nase™ and Ax the “nan,™) This can be solved for ¥ in terms of &

oy

Write the equation of the line whose slope is 2 and which passes through the point (=1, 2).
SOLUTION
Let Pz, v) represent any podnd oo the line, Then
Ay=y=1 Armyx—|=l)l=x-+1
and m = 2. Using Ay/Ar = m, we find

H:E ar y—2=ax+11=2a+2

thus v = 2r + 4.

Write the equation of the line passing through P (1, 2} and Py(3, =2).
SOLUTION
Let Plx, ¥) represent amy point an the lme. Then using F,, we compube
Ap=y=212 Ar=x~—1
To find the slope m, we use P, and P to find

Ay==1=1e=—4 Ar=3-]1=2
Then
Ay y=1_
m_ﬁ_.r__i B I—_—I-——l
Then

y=2=-Ix4+1 aml  v=-Ix+4

Show that lines are parallel if and only if their slopes are equal
SOLUTION

Refer to Fig. Al-18, Suppose that lines J; and 1, are parallel, Then the alternade interior angles 0 and &,
are equal, and so are the slopes tan @) and ton ;.
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Use the distance formula to compute the lemgihs of the sides of ABC:

AB = 1 = (~1)F + {1 = (=) = 2 + 2 = B
BC = yf[-1 —(~4)F + (=1 =2 = J3F +(=3)* = VT8
AC = JII —{—4F (1 =2 = ,Ia"51+.[-|]’ = +/26

f=1ﬁ=ﬁ+f=3+ls

Let the unknown coordinates ol D be denoted by (x, ¢). Uze the fact that opposite sides of a rectangle are
parallel to find ¥ and v. Since parallel lines have equal slopes, compute the slopes of all four sides:

-1-1 -2 y—3  y-3

Sope A === Slope O = ) "r v d
e — 1 =12} 3 ¥—1
Skope BC = =—==1 Slope i ==—
e = T w73 fope i

Then, for ABCLY e be 2 rectangle
Skope O = slope 48 Slope D4 = slope FC

or

This leads to the equations
y—i=x+4 and y—l=—x+1
ar
—x+y=1b and  x4p=2
Solving, x = —2 and v = 4,

ALE Find the equation of a circle that has radius r and its center at the point Ok, k).
SOLUTION

Refer to Fig. Al-21. If Pz, ¥} is any poant bying on the circle, its distance from the center of the circle

mvust e egusl 1o r, Using the distence formula 1o expreas this mathematically, we have

D=lx—k +x—k =r

S0 (x — B)* + (v — kF =, which is the aquation of the circle.

ALY Civen any three points, not all lving on a line, find the equation of the circle determined by them.
SOLUTION

Refer to Fig. A1-22. Let Pyia,. &), Palay. by), and Pyay, by) be the coordinates of the points. Let r be

the radins of the circle and (k, £} the center. Since each point is distance ¢ fiem the center, then

fay = &+ (b &P =#
fay — K+ (b — k)Y = F
g — WY+ (b — kY =4



288

APFENDIX |
Piz= A
Py iy, By)

Ch Ky

\_‘h___"'/ ¥
Py oy by Py iy, By)

Fig. Al-21 Fig. Al-12
This yields, after multiplying and collecting like terms:
m—mﬁ+m—mu=%;ﬁ+ﬁ%ﬂ
{aty = g b -+ (By —ﬁl].lr=“.§g"§ +¥1

These equations can be solved for & and k o yield
=_|-['“||!{'I’.'.| _'I’:I.: +“'¥ﬂ"t_ 'bl}'l"d?l:b:l __b':tﬂ

h
5 d
y = 1 Il = ay) + dilay —ay) + difa, — ay)]
Here, df = af + b, df = o + b, o = o} + b}, and d = ay{by — by} + aylby — by) + ay(b, — by). Finally, r

can be found:

r= ,’I'I{all - ﬂl];I <+ l!!| —.ﬂz

ALID Find the equation of the circle passing through the three points Py(1, 2), Fy(3, 0), and Fy(0, —4).

SOLUTION
As in Prob. ALS, we find

df:qf-l-—bf:ﬁ cri.—u-!=3- b-,—b,=l|
ﬂq=ﬁ+bl='; ﬂ"!—ﬂ'|=—l b]"'l!ﬁl_ﬁ'
n'%: 3+ by = b a4 —dy = —2 by —hy =12
Bo
d = 1(#) + 3(—6) + 0(2) = — 14
ansd
h_—l:5[¢]+"i|1:—ﬁj+ll5{1'!]_ 2 _ 1
N 24 T 14
o SO +9(=1)+ 16(-2) _ 26 _—13
. H M 14

Therefare, the center of the circle is lecated st

(% %)
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andl the radies is calealated by

SR

Al1l Show that ¥ = Foos f, v = rsinfare the parametnic equations of a crcle of mdius F whose center is
at the origin.
SOLUTION

By Prob. ALE we must show that © + % = 7. Using the trigonometric identity cos® ¢ + sin® £ = 1, we
obitain

4+ = freostV +irsinn’ = Ao’ + Fain’f = Pl r 4 En ) =

AlLLZ Show that the parametric squations
a4 b c+dt
T = I]_-' =
&+ &+ ff
are the equations of a line in the plane.
SOLUTION
We show that the slope

& M-
Av xy—ay
5 & constant, independent of the parameser £ 8o
¥a=n _ Aehdi)ie+ iz} = (o dn e + /1)
X —X da+bip)/le + M) — la + beybfle + )
_ of +deny 4 offy + difizty — oo — ofty, — dery — diftyl,
ae + affy + bety + bilye, — ae — afty — ebr, — By,
EM’z—fl}—Qr{fz—fll=-?'f—if
belty — 5} —afity — ) be—af
S0 1f be = af 2 0, the slope Ay/Ax is constant, and so this is the equation of a line.

Al.13 Let the equations of a line be given by (Prob, A1.12}
co Lt
1=t
Then {a) plot the line for all values of r, (#) plot the line segment over the interval [0, 2], and (¢) find
the slope of the line.
SOLUTION
Making a table of valees, we have

I+t
= —
* | =r

' -1 -4 0 § 2 3

x i { 1 3 -3 -2

¥ i I 2 5 —d -
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The resulting lne i5 shiown in Fig, Al-13

(@) We observe the fdlowing: (1) the line is undefned at 5= 1, (2) ix, ¥} — (o0, 00) a8 1 == 17, (3)
(%, b =» {=00, =oo) as § == 1, and (4) {x, ) = (=1, =1} a5 § = *oo (sec Fig. AL-23)

(&) The interval [0,2] inchedes the infinite point at { = 1. The comesponding region is the aerior ling
segment betaeen points Py {1, X) at v = O and P03, —4) at 1 = 2 (see Fig. Al-24),

e} From Prob, AL 12, the slope of the line is, withaw |, be |, cm2 dw i, e= |, and /= =],
Ay _(IHD-@2N-1 3

Ar - (1NN ={(1§-1)" 2

AL Let A=2147), B==314J,and C =1~ 2J. Find {a) 2A — B and (b} =34 + 5B = 2C.
SOLUTION
Perform fhe scalar mulliphcation and then the addition,
(@} A =B = 2021 + 7J) = (=30 + J) = (4] + 14J) + (31 — J}

=@+ +{4-10=T1+131
(#) =3A 4+ 5B =2C = =HIl+ TT)+ H=31 + J) = 2{1 = 11}

= (=61 — 210} + (=151 + 85 + (=20 + 4J)
= (=6 = 15 = 2+ (=21 + 5+ & = =23 = 124

Al1.15 Find x and y such that 2 + {3y — I = + (3x + 1.
SOLUTION

Sinos vectors are equal only i thelr cormesponding components are equal, we solve the squations (1)
2r= yand (2 vy — | = i+ 1, Subshitoting mio equation (2), we have (2x)— 1l =3z + 1 and —2 =z and
fimally p=2x = A= =4 s x = =] and y = =4,

AL16 The tail of vector A is located at P{—1, 2), and the head is at (5, ~3). Find the components of A.
SOLUTION

Translate vector A so that its tail is at the crigin. In this position, the coomdinates of the head eall be the
componens of A

Translating P to the orgin i3 the same a5 subtracting <1 from the x component and 2 from the y
companem. Thus the new head of A will be bocated ai point (3, whose coordinates {x;, v, ) can be found by

n=8—(-l1=6 w=-3-2=-3
Thus A = 61 — 5J.

ALILT Given the vectors A =14 2J and B = 21 = 11, find {a) the length, (b) the dot product, and (c) the
angle & between the vectors,
SOLUTION
@) Al=VIE42=y%  |Bl= R (-3 =13
B A B={420- (=3 =(1-D+[2-(-3]=2-6=—4
(ed  From the definition of the dot product, we can sobve for gos 0
_AB -4
CIAB] SRS

cos i

S0 0 =119.74"
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.4

Fig. Al-13

]

it 4P D=0

I ==
1 L i i L i -
LA _11:- HHE x
—F
]
=ill

Fig. Al-24
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ALIE Find the unit vector U, having the dircction of A = 21 —3J.
SOLUTION

Smes Uy, = I::_' it Fodlowws that

P
AM=yB+-0r=v13 ad Uy=—= =

AL1%9 Show that the commutative lew for the dot product
AB=B-A

holds for any vectors A and B.
SOLUTION
Let
A=al+ad B=&1+h]
B0
A-B=aby +al B A =ba + b,
Companng bath expressions, we ses that they are egual,

Al20 Show that the distnbutive law for the dot product
A+B)-C=A-C+B-C

holds for any vectors A, B, and C.

SOLUTION
Let
A=gill4ad Bahl+bd C=gl+cd
So
A+ B={gy+ bl +la; + b,
and
(A 4+ B)-C =gy + Iy + 0 + Badey = agey 4+ ey 4+ gy 4 By
On thie other hand,
A-C=ae +auey B-C=be + by
80

A D4 B C=ae fapwy+ by + o
Comparing both expressions, we see that they are equal.

Al.21 Show that the equation of a line can be defermined by specifving a vector ¥V having the direction of
the ling and by a point on the line.
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SOLUTION

Supposs that ¥ has components [a, 5] and the point Pyixg, ¥ is on the line {(see Fig. A1-25), If Plx, ¥) is
any point on the line, the vecior PP has the same direction as ¥, and so, by the definition of a vector, it must
be a {scalar) multiple of ¥, that is F,F = 1V, The components of FF are [x — x,, v — ] and those of 1V ane
tla, ). Equating components, we obtain the pammetric equations of the line:

T-g=t Fpon=h o x=atdny  y=biiy

r

~ \

Py (s )
T Pl
Flg. Al-25
The nonparametric form of the equation can be determined by eliminating the parameter § from both
I~h_ YT
@ b

Salving for ¥, we have

L &
¥ —Ef'H' (}n —EI-:-)

Al.21 Find the {a) parametric and {#) nonparametric equation of the line passing through the point
Fyil,2) and paralle] to the vector V = 21+ J.

SOLUTION

Asin Prob ALZL we find witha =2, b= 1,5, = 1, and 155 =2.Ih.lt[|:]:|:l:2r+],y=r+2|]'|d.{b]
with bja =4 y=ds+2-H=lz+i

AL} Find the parametric equation of the line passing through points P,(1, 2) and Py(4, 1). What is the
general form of the parametric equation of a line joining points P(x,, v, ) and Ps(r,, 3,07

SOLUTION
Refer w0 Fig. Al-26, Choosing ¥ = PPy = (4 = DI+ {1 — 20 = 31 — 1J. Then as in Prob A1.21,
r=k=1 and y=—=r=2. In the gemeral case, the direction wector V 15 chosen, as above, in be

PPy = (x5 — 5} + (»y — w M. The equation of the line is then
=g ting-nk y=Eptlp-pk

AlZ4 Find the mumber ¢ such that the vector A = [ 4 cJ is orthogonal o B=21—1.
SOLUTION
Two nonzero veciors are arthogonal (perpendicular) if and only if their dot product is zero. So
A-B={l+cl}-(A=T=(1 2+ [cl=1)]=2=¢
So A and B are orthogonal if 2 —c=0arc=a 2
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Fig. Al-26

Al.25 Compute:
o (340G
o (72)*(7 )
@35 1 1)
SOLUTION

(g} Auding corresponding entries, we oblain
54[+1—]J_5+2 4=1 I+3% 7T 3 4
O =1 7 20 L N2 =140 TH1) 42 =1 4
(k) Since the marrices spe of different sizes. we cannot add theen,
{c) Multiptying esch entry by 3, we have

G =035
r=(51) =G 2)

Al26 Let

Find 2A — 3B,
SOLUTION
First nnaltiply, and then sdd:

K J 5 =T 6 4 =15 21 G=15 4411 =4 23
2&—33=I(D I)_3(3 —1}=(u z)*(—g E)=(ﬂ—'ﬂ' z+|5)'=(—a a)

A1.27 Determine the size of the following matrix multiplications A - B, where the sizes of A and B are
given as {a) (3 = §), (5 x 20 (6} (1 = 2), (33 1% (e (2 = 21, (2 = 1) and (d) (2 % 2), (2 = 21
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SOLUTION

{@) (3 x 2} (5) undefined, since the column size of A (2) and the row size of B (3) are not equal; (c)
(2= 1k (d) (2 = 20

Al.28 Fmd the sizes of A and B so that AB and BA can both be computed. Show that, 1f both A and B arc
square matrices of the same size, both AB and BA are defined.

SOLUTION

Let the size of A be {m = r) and the size of B be (r = 5). Then AB is defined caly if r = 0 Also, BA is
defined only if 5 = m. Thas, il A i (m = r), then B must be (r = m) [0A 8 square, say, (n = n), and B is also
(m = n}, then both AR and BA are defined,

Al29 (Given

find A7
SOLUTION
E‘nd‘l.ﬂ.l'lgi.l'lg the rovws and colamns of A, we oblan

AL30 Compute AB for
2 3 —4
{a) A:(I 2) and B=( T)
ib) A=(f ;) and B={_",}
2 3 )
il ﬁ.=(l 2) and E=( 7

SOLUTION
(o)} Since Ais (2 = 2)and B s (2 = 1), then AB s (2 = 1)

23 =i Lof=d)4 37 13
*""(| 1)( 7]=(1-{—41+1-?)=(m}

fr A\ -4 Sy _fi(-443.7 2.54+3.6%_ (13 8
&) ‘“‘(i i)( ﬁ)_(l-{—4]+2-'3 1-5+2-{-)‘(m n)
© A-B=(2 3)(~4 5 I\ _[2-0+37 25436 2.943.10
1 2/\ 7 6 10 - (—4)+2-7 1-5+2:6 1-942.10
_ (12 2 48
w17 29
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A131 Let

Find (a) AB and (&) BA.
SOLUTION

o me(3a)(E10)
a - I 5 B
3 |

3 2
@ Bas{® 2 Vs g]=(B3t25+1:2 6:242-641:1) _ (30 25
B T - COM3IH5.54R-2 324504810 WD 4

Jobh2F 32425 F 1428 24 16 19
(5-ﬁ+-ﬁ-5 5.246-5 5-[+6-E)=(4E A0 55)

oe+1-3 2.241-5 2-1+1-8 15 9 10

Al32 Find the inverse of A = (.; i)

SOLUTION

w:wishmfummm(ﬁ ::]snﬂul

GACD-GY)

pHir g+ 10

Ip+d4r dg+4s) \o 1
So pddr=1, g+ v =0, Jp4 4 =0, and Ay + 4z = |, Solving the first and thind eguations we find
p = -1 r =41 Solving the second and fourth equations gives g = | and s = = L. 50

v=(3 )

ALZY Let & be the function which multiplies a given vector by 2 and & be the fonclion that adds the
vector b to a given vector, Find (@) F + G, (B) Fo G, (¢) G e F, (@) F7', and (&) G,

SOLUTION
If v is any wvector, the functions F and & operate on v as Fivi = 2v and Givi=v+ b

(F + GHv = Fiv) + Gv) = (2%} + (v + b) = 3v + b,

(F o GHv) = FIGv)] = 2|G(v)] = 2[v + b] = 2v + 2b.

(G & FHv) = GIFiv)] = [Fiv)] + b =2v + b.

We can guess that F'(v)=3v. To check this, we set F'[F{v)] =3[F(v}] =4[2¥]=v and
FIF 4w}l = 2{F (v = 2[iiwv] = w.

5. We can verify that G-'{¥) =v—b G- G¥]]=G""(v+bl=(v+b)—b=v and GIG~'(v}] =
GHvi+bh=iv—b+b=vw

Multiphdng, we have

o o=

Al34 Show that A o B = AR for any two matrices (that can be multiplied together).
SOLUTION
The terms A o B and AB produce the same effiect on any column matrix X, e, (Ao BiX) = ABX,
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Riecall that ary mabrix function ACX) iz dzfined by A(X) = AN 5o
(Ao BNX) = A[B(X])] = A(BX) = ABX

AL3S Given that A isa 2 = 2 matrix and b is a vectos, show that the function F{X) = AX + b, called an
affine transformation, can be considered as either a transformation between vectors or a8 a mapping
between points of the plane.

SOLUTION
Suppose that
A= (ﬂll '“'lz)
oy T

and v has components [b,, k], If X is a vector with compoments [x;, 5], then

u=(ﬂ|1 “lz:](-"l}

Iy A%

can be identified with the vector having components [o,x, + 05, ay5; +a3;1;) And 50 AX +bis a
vector.

If X ={x;, %) is a point of the plane, then as & point mappmg, FIXT = [0, G080, where the
coordinate fanctions |, and & are

Sl = ayyxy +ax; + by amd LX) = ayx) +agx + by

Al.36 Show that for any 2 = 2 mairix A and any vector b the ransformation FIX) = AX + b transforms
lines into lines.
SOLUTION
Let x = ar + x; and y = & + ), be the parametric eguations of a line. With X = {x, v} then

AX = ) @3 ﬂl+.:|]. _ H|1H"+Hl|tﬂ+ﬂ|1ﬁ+ﬂ|z}b
T \ay ap f\briyy ) \agar4ayx +apht +ani

— _ '1:"1|'3+ﬂ|z'r1]+{ﬂ|11a+ﬂ1g_1-'u+b|})
FX)=AX+b= (n:.::;._.:i 4 dyh) F (@ay g + dgpry + By

This can be recognized as the pamumetric equation of a line (Prob. Al.21) passing theough the point wath
coordinates (g Xy + @pakg + 0. 835 + Sk + 0} and having the direction of the wvector v with compo-
nents [ay,a + @b, @y a + b

A1.37 Show that the transformation F{X) = AX + b transforms a line passing through points #, and P,
into a line passing through F(F,) and F{F;).
SOLUTION
Ag i Prob. 41.23, the parametric equation of the line passing through P, and F; can be written as
r=xp bl =-nk  y=pyeopl

As m Prob. AL36 with @ = 33 — 1, and b = ; — 3y, we find that F transforms this bioe inlo another hne.
Mow when ¢ = {, this line passes through the point

(agx + ey + byoay g +agy + b= FP)

wnd when £ = [, it passes through the point
gy + aggh + ay x4 agay, + by eya+ oph + ayx) +apn + byl = FIP)
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Mathematics for
Three-Dimensional
Computer Graphics

ALl THREE-DIMENSIONAL CARTESIAN COORDINATES

The three-dimensional Cartesian (rectangular) coordmate systemn consists of a reference point, called
the orlimin, and three muteally perpendicular lines passing through the orgin. These mutually perpendi-
cular bnes are taken to be number lines and are labeled the x, v, and z coordimate axes. The labels are
placed on the positive ends of the axes (see Fig. A2-1),

Fig. A1

Oirentation

The labeling of the =, v, and z axes is arbitrary, However, any labeling falls info one of two
Elassifications, called right- and lgfi-handed orientation, The onentation is determined by the rght-hand
e,

298
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The Right-Hand Rule

A labeling of the axes is a right-handed orientation if whepever the fingers of the right hand are
aligned with the positive x axis and are then rotated (through the smaller angle) toswerd the positive ¥ axis,
then the thumb of the nghi-hand points in the direction of the positive z axis, Otherwise, the orentation is a
lefi-handed orientation (sce Fig. A2-2).

g ¥
-4
—
x
fe} Right-handed oriestation, {8} Lefi-handed orkentation.
Fig. A2-2

Carfesian Coordinates of Points in Three-dimensional Space
Any point P in three-dimensional space can have coordinates (x, v, 2) associated with it as follows:

1. Lef the x coordinate be the directed distance that P is above or below the vz plane.
2. Let the y coordinate be the directed distance that P is above or below the xz plane.
3. Let the z coordinate be the directed distance that P is above or below the xy plane.

See Fig. A2-3,

————

/!

rd |
; i
=) - F{.:;.nt-t.'ll
| 7 -
| = / ’
| :V"

Y T waw
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Distance Formals

If Pylxg, vy 2g) and Py(x;, y;. 7)) are any two points in space, the distance [ between these points is
given by the distance formula:

D= iy =2+ Oy =3 + 5 — 2

All CURVES AND SURFACES IN THREE-DIMENSIONS
Curves

A three-dimensional curve is an object in space that has direction only, much like 2 thread (see Fig.
AZ-4), A curve is specified by an equation (or group of equations) that has only one free (independent)
variable or parameter, and the x, y, and 2 coordinates of any point on the curve are determined by this free
variable or paramefer. There are two fyvpes of curve descniption, nonparametnic and parametric,

Iy

Fig. A2-4

I. Nonparametric curve description.
(@) Explicit form. The equation for curve C are given in terms of a variable, say, x, as

G oy=flx) z2=3z(x

That is, v and = can be calculated explicitly in terms of x. Any point F on the curve has
coordinates Plx, F{x). glx)].

(B Fmplicit form., The equations of the curve are Fix, ¥, 2} = 0 and &ix, ¥, 2) = 0. Here, y and z
must be solved in terms of =,

2. Parametric curve description. The three equations for determining the coordinates of any point on
the curve are given in térms of an independent parameter, say, £, in a parameter range [a, b], which
may be miinite:

x = fir}
Oy =g, a=t=h
2= R
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iby  Ifmplicit form. The equation of the surface is given in the form F(x, p, 2) = 0. Here, 2 is to be
sofved in terms of ¥ and v, There iz no restriction as to which variables are free, The
cotvention is to represent  in ferms of x and v, but nothing disallows a representation of x in
termis of ¥ and z or ¥ in terms of x and =z

2. Parametric description. The thres equations for determining the coordinates of any point on the
surface § are described in terms of parameters, say, 5 and ¢, and in parameter ranges [a. #) and
[c. d], which may be infinite;

x=fis1), a=s=h
& =g, e p g
== hix, I

The coordinates of any point P on the surface have the form [ fis. 1), gis. ). b5, 0).

# Eguations of @ plame. The squation of 2 plane can be written m explcit form as c=ax 4 b+ ¢
or in implicit form as Ay + By + Cz 4 D=0 (see Prob. A2.8). The equation of a plane is linear
in the variables x, v, and z. A plane divides three-dimensional space info two separate regions,
The implicit form of the equation of a plane can be used fo determine whether two points are
on the same or opposite sidezs of the plane. Given the implicit equation of the plane
Ax 4 By + Cz 4 D =10, let fix, v, 2) = Ax + By + Cz + D, The two sides of the plane BY, B~
are determined by the sign of fx, w, 2) that is, point Pley. v, 25) lies in region R® if
Fxg. oo zg) = 0 and in region B of Flxg, v, zp) < 0. If Fixg. v 55) = 0, the point hes on the
plane. The equations ¥ =0, v =0, and z = 0 represent the vz, xz, and xy planes, respectively.

o (Quadric surfaces. Quadric surfaces have the {implicit) form A+ B +C2 4+ Doy + Exz +
Fyz+ Gx + Hy + Iz +J = . The basic quadnic surfaces are described in Chap. 9,

o  Cylinder surfaces, In two dimensions, the equation v = f(x) represents a (planar) curve in the
plane. In three dimensions, the equation y = J{x) i3 a surfsce. That is, the variables x and z are
free, This type of surface is called a oplimder swrfoce (see Fig. AZ- 6)

Fo=fix)

Fig. A2-6

EXAMPLE 1. The equation a2 + 3 = | is a circle in the xv plane, Howeves, in three dimensions, it represents &
cylinder (see Fig. A2.T)
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i

Fig. A2-7

Al3 VECTORS IN THREE-DIMENSIONS

The definition of a vector and the concepis of magnitede, scalar multiphcation, and vector addition are
completely analogous to the two-dimensional case in App. 1.

In three-dimensions, there are three natural coordinate veciors I, J, and K. These vectors are unit
vectors (magnitude |) having the direction of the positive x, v, and 7 axes, respectively. Any vector V can
be resolved into components in terms of 1, J, and K: V = al + &J + cK.

The components [, b, ¢] of vectors V are also the Caresian coordinates of the head of the vector V
whieni the: il of ¥ is placed st the onpin of the Cartestan coordinate system (see Fig. AZ-E).

(= b oo

Fig. A28
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EXAMPLE 2. Let Fylxy, vy 250 and Py (x;. ¥;, 2;) be two poinis in space. The directed line segment Fo P, defines a
vector whose tail is at Py and head is at P,

To find the components of PP, we must transinte 0 that the tal & 5 placed at the ongm. The head of the
vector will then be ot the point (x;, = x5, ¥ = ¥, 3y = Zpt The components of PP, are then

FoF, m {x; = xgll # {, =y + (2 — ) K

Yector addition and scalar multiphication can be performed componentwise, as in App. 1. The magnitude of a vector
¥, IV, i given by the formula

IVl = va® 48 4 2

For amy vecior V, a unit vector (magnimode 1) Uy having the direction of V' can be writlen as

The Dot and the Cross Product

L'Etv| =ﬂ1]+&|J+f|K Eﬁlﬂ v1:ﬂ1[+b21+f2“b¢mmmm.

The dos or sealar product of two vectors is defined geomettically as V, -V, = |V, |V, cos 8, where 8
is the smaller angle between ¥, and ¥; (when the vectors are placed tail to tail). The component form of
the doi product can be shown to be

'1'?] ""II = dydy + ﬁ‘p!?z +f|l'."]:

Mote that the dot product of two vectors is a number and the order of the dot product is immaterial:
¥V, -V, =V, . V. This formula enables us to calculate the angle & between two vectors from the formula

VieV:  a@tbhbtag
[V, 1¥sl Jn‘}+&f+¢§\."d‘}+b§+r:§

Note that two vectors are perpendicular {orthoronal) (Le., 0 =907} if and only if their dot product
¥, - ¥; = 0. This provides a rapid test for determining whether two vectors are perpendicular. {Equiva-
lenthy, we say that two vectors are parallel if they are scalar multiples of each other, i.e, ¥, = kV, for some
number k)

The cross product of two vectors, denoted V| x ¥y, produces a new vector defined geometrically as
follows: ¥, x V; is a vector whose magnitade is [V, = V3| = |V, ||V;] sin &, where # is the angle between
¥, and Vs and whose direction is determined by the right-hand rule: ¥, = V5 is & vector perpendicular o
both ¥y and V5 and whose direction is that of the thumb of the right hand when the fingsrs are aligned with
¥, and rotated toward Vs throwgh the smaller angle (see Fig. A2-9).

From this defimiton, we see that the onder in which the cross product is performed is relevant. In Gsct:

."rl = 'fr_z = —-["I 4 'fr|]

cosfl =

MNote also that V = ¥ = 0 for any vector V, since # = 0F. The component form for the cross product can be
calculated as a determinant as follows:

1 1 K

by g
VixVy=|ay & o=

b o

£

@ e

@y by

- J+

K
L] brl
& b oo

= by — byey M+ {ega; — g W + (@ by — by JK

EXAMPLE 3. Fnrnﬁgh-hnmhdﬁulﬁmﬂhﬂdmﬂetyﬂﬂﬂ,ﬂhﬁt lx]:k,.l'.ai: K=L1%2K=-l.
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Fig. AZ9

The Vecior Equation of a Line

A line L in space is determined by its direction and a point Py(xg, ¥p, 25 that the line passes through. IF
the direction is specified by a veclor V = al + & + K and if Pix, v, 2) 15 any poinl on the line, the
direction of the vector P, P determined by the points Py, and P is parallel 1o the vector ¥ (see Fig. A2-10).
Thus, F.F = rV for some number 7.

Fig. A2-10
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In component form, we find that (x — x ) + (v — 3 + (2 — 5)K = ol + th) + k. Comparison of
components leads to the parametric equations;

r=x+a  y=Mt+h =t

In Probs. A2.5 and AZ.6 it is shown how the equations of a line are determined when given two points
on the ling.

The Vector Equation of 2 Plane

A vector N s sad to be a marmal vector w0 a given plane it N is perpendicular i any vector ¥V which
lies on the plane; that is, N - ¥ = 0 for any ¥ in the plane {s¢¢ Fig. A2-11}% A plane is oniguely determined
by specifying a point Fylxg, ¥y, 5) that is on the plane and a normal vector N = a1 4 nd + 5K Let
Pix, y, £} be any point on the plane. Then the vector PeP lies on the plane. Therefore, M is perpendicular to
it. 3o N-P,P=0.

Fig. A2-11

In component form, we obfain
g0+ msd + K] - e — 50+ v — o + {2 — 2, ) K] = D

mylx — )+ ngly — ¥l +mlz — ) =10

The equation of a plang can also be determined by specifying (1) two vectors and a point (Prob. AZ2.10) and
(2} three poinis (Prob, A2.11). Using vector notation, we can write the distance [ from a point &%, ¥, Z) 1o
a plane as

pomE-x)tmF -y +mE-z)] NPy

where M = m 1+ nd + a3 K is a normal vecior io the plane and Pglxs, vs. 25) i3 a point on the plane (Prob,
A2 13),
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Al4 HOMOGENEOUS COORDINATES

The Two-dimensional Projective Plane

The projective plane was introduced by geometers in order to study the geometric relationships of
figures under perspective transformations.,

The two-dimensional projective plane Py is defined as follows,

In three-dimensional Canesian space, consider the set of all lines through the origin and the set of all
planes through the origin. In the projective plane, a line through the origin is called a point of the projective
plane, while a plane through the onigin is called a fine of the projective plane.

To sec why this iz “npatural™ from the point of view of a perspective projection, consider the
perspective projection onto the plane = = | using the origin as the center of projection. Then a line through
the origin projects onto a point of the plane z = 1, while a plane through the ongin projects onto a line in
the plane £ = 1 (Fig. A2-12).

].i.nl:f

Fig. A2-12

In this projection, lines through points (x, 3. 1) in the plane project to infinity. This leads to the notion
of ideal points, discussed later.

Homogeneous Coordinates of Points and Lines of the Projective Plane
If (@, b, c) is any point in Cartesian three-dimenstonal space, this point determines a line through the
orgin whose equations are
X =
v= bt (where { is o number)
=

That is, any other point (af, br, of) determines the same line. So two points {ay, b, ;) and {ay, b, c3), are
on the same line through the ongm if there 15 a number ¢ 50 that

ay = ayf by = byt &y = oyl (d2.0)
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We say that two triples, (@, by, ¢|) and {a, by, &3, are equivalent {i.e., define the same line through the
orgin) if there is some number ¢ 50 that the aquations (4.2, 1) hold. We write (o, &y, o3 ~ (@3, by, o35 The
equivalence classes of all wriples equivalent to (o, b, ), written a8 [@, b, ¢], are the points of the projective
planc. Any representative (e, by, ;) equivalent to (o, b, ©) is called the homopeneons coordinate of the
point [, b, ¢] in the projective plane.

The points of the form (o, b, 0) are called ideal points of the projective plane. This arises from the fact
that lines m the plane z = [ project i infinity, [n a similar manner, any plane through the origin has an
equation #.x 4+ #sv + B2 = 0, Note that any multiple ka,x + ks p + keyz = 0 defines the same plane.

Any triple of numbers (m,.ny, 7,) defines a plane through the origin, Two triples are squivalent,
(ry, mp.mg) ~ (d), dy. dy) (Le., define the same plane), if there is a number & so that d, = Jn,, d, = im,,
and oy = kn,. The equivalence classes of all triples, [n), n;. 0, ], are the lines of the projective plane. Amy
representative (d), d;, dy) of the equivalence class [# . By, 1] is called the komogeneois line coordinate of
this line in the projective planc.

The ambiguity of whether a triple (g, b, ) represenis 3 point or a line of the projection plane iz
exploited as the Duality Prnciple of Projective Geometry. [ the confext is not clear, one usually writes
{a, b, ) 1o ndicate a {propective) point and [a, b, c] 1o indicate a {projective) Ime.

Correlation between Homogeneous and Cartesian Coordinates

If (xy vy 20 ) 2y # 0 are the homoegeneous coordinates of a point of the projective plane, the equations
x = x;fz; and ¥ = ¥ fz; define a cormespondence between points Py (x;, vy, 2;) of the projective plane and
points Pix, v} of the Cartesian plane,

There is no Cartesian point corresponding to the ideal point (x, ¥, 00, However, it is convenient o
consider it as defining an infinitely distant point,

Also, any Cartesian point Mz, ¥} corresponds to a projective point Plx,. v, 2;) whose bomogeneous
coordinates are x; =x, ¥, =y, and 2z, = 1. This cormespondence between Cartesian coordinates and
homogeneous coordinates 15 exploited when using matrices to represent graphics transformations. The use
of homogensous coordinates allows the wanslation transformation and the perspective projection
transformation to be represented by matrices (Chaps. & and T

To conform to the use of homogeneous coordinates, 2 x 2 matrices representing transformations of the
plane can be sugmentied 1o use homogencous coordinates as follows:

L2

Finalky, note that even though we have a comespondence between the pomts of the projective plane and
those of the Cartesian plane, the projective plane and the Carlesian plane have different topological
properties which must be taken mto sccount in work with homogensous coordinates i advanced
applications.

Three-dimensional Projective Plane and Homogeneous Coordinates

Everythmg stated about the two-dimensional propective plane and homogeneous coordinates may be
generalized to the three-dimensional case. For example, if Py{x,.v,.z;.w;) are the homogencous
coordinates of a point in the three-dimensional projective plane, the comesponding three-dimensional
Cartesian point Mx, v, 2} is, for wy 10,

_ X Fi

3|
e p=— rm L
L L | L |
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SOLUTION

The equation of a plane with normal vector N = 414+ 8J + CK and passing through a point
Poilxg. Fp-Tgh 15

Ax—x) + By —wl+ Clz -zl =10 ar Ax 4 By + Lz 4 [ —Ary = By = Ll =10
Calling the quantity [ = [=Ar, = By = Cz,) wields the equation of the plane:
Ar+ Bv+Cz+ D =10

A29 Given the plane 5x =3y 6z = 7: {g) find the notmal vector o the plane, and (b} determine
whether P(1, 5, 2) and Py(=2, =1, 2} are on the same side of the plane.

SOLUTION
Wnie the equation in implicst form as 5r — 3y 4 G = T =L

{#) From Prob. A28, the coefficients 5, =3, and & are the compoments of a normal vector, that is,
N=351-31+ 6K

{B) Let fix, p.2) = Sx — Jp 4+ iz — 7. The plane has two sides, &7 where ({x, v, 2) is positive and &~ whene
Fix, v 2) is negative, Mow for podmt 201, 5, 2], we have

JUE S, 2= 5(1) = 35} B2} = T = =3
and for point Fyl=3, <1, 2),
=3 =12 = 53— H -1+ &N —T =T
Since both (1, 5, 2) and f{=3, =1, 2} are negative, P, and P, are on the same side of the plane,

AL10 Find the equation of a plane passing through the point Fyil, <1, 1) and containing the vectors
V,=T1—J+Kand Vy = —1 +J + 2K {see Fig. A2-15),

"|l"| = N

Py
Fig. A2-15

SOLUTION

T find the equation of o plane, we néed to find 8 nonmal vector perpendicular to the plang, Snce ¥, and
¥, are b Lie on the plane, the cross product ¥, x W, perpendicular 1o bath ¥, and W, can be chosen o be the



APPENDIX 2 313

mirmal vector M {see Fig. A2-15) S0
I J K

N=v,xvVo=| 1 -1 t|=""0 M-l P Mes] U ko - sk
1 B ol
-1 1 2
So with ¥ = —31 — 3J and the point Py(1, — 1, 1), the equation of the pline is
“3r = U=y — =1+ 0= 1) =0 o —dx—dym=d

Finalky, x 4y = 0 is the cquation of the plane. This is an example of & cylinder surface, since = is a fres
wariahde and ¥ = —z.

A1l Find the equation of the plane determined by the three points Pgil, 5, =7), P2, 6, 1), and
2,00, 1,2) (see Fig. A2-16).

FoFyx FFy =N
Fig. A2-16
SOLUTION
To find the equation of a plane, we must know a point on the plane and 2 noremal vector perpendicular 1o
the plane.

To find the normal vector, we observe that the vectors PyP, and Py P, lic on the plane, and so the cross
product will be a vector perpendicular to both these vettors and so would b our cholce for the nommal vector;

that is,
N=FF, < FF,
Mow
PPy =(2— I+ {6—SI+{l —(—THK =1+J+8K
and
BF, =(0—1M4+{1 -5+ (2—(-TNK=—-I—4J+9K
5o
|
ﬁx[ﬁ:i L Is'[!=|_1: §|1-| : 3|J+|_; __:|K=4]]—JTJ—JI£
=] =4 9
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Fliﬁl! Pl =I)

Proy »p 12

Fig. A2-18

= x4yl
Lyt p=w +ny
=2+ Byl

We first find the intersection point Pp(x,, v, 350 of the line Ly with the plane. The distance from the poim
Pylxy, vy 2 ) to the plane will be the same as the distance from the podet P (xg, v, 20 to the inbersection podnt
Pylxy, vy zp)
Subaritsting the equations of the line L, ino the equation of the plane, we find
Ay 4 omg = g ) 4 Hglyy 4wl — gl 4 Al ot — 5 =10
Solving far 1, we have

_mixy, = xg) +mglyy =yl +min — 5l

=
w4+ mi 4ol

Calling: this number £, we find that the coordinates of P, are
X =x TR My =1y o agly I =5+l (42.2)
The distance D from Plx;, ¥y, 05,0 80 Pl ppoa) 08

D= fim -5 F +y -0+l -2
From equation (A2, 7L we obian
I —x =mh Y =¥ = gl Iy =3y = myly
Substiation imo the formals for £ yields

I & S ——
D= \fimgF + (mtyF* + gtV = |1/ ] + md + ]
ar, substinting for £,

= bt = %) + Ryl — b+ mylzy — )
Nm +ag g
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We can rewrite this in vector form by ohserving that

INl = /] 4 4

and that (x) — x5, ¥ = ¥y, 5 — 5y} are the components of the vector PyPy. So
IE|l=|]"t|-['..|"|_|= d

IN] [y ]

AL14 Find the projection ¥, of a vector ¥ onto a given planc in the direction of the normal vector N,
SOLUTION
From Fig. A2-1%, by the definition of (head-to-tail) vector addition (see App. 1), we have
YV, +kN=¥ or ¥, =V —iN

M
W kM
Lf\f,,
Flane
Fig. A2-19
To find the sumber &, we use the fact that V, lies on the plane, so N is perpendicular to V. ie, V, -N =0
So
0=V, -N=V-N—kN-N} or &=%=Tﬁ: {since N - N = [N[)
Then
V.
1."=V—W—H [A2.3)

AL1S Let a plane be determined by the normal vector N=1—J+ K and a point P2, 3 — 1),
{2} Find the distance from podnt P (5, 2, 7} to the plane.
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(b Lt ¥ s 21+ 3J — K be a vector, Find the pmjnn:lll,m u-r"r" (im the direction of the normal) onlo the
plane.
SOLUTION

ia} The vectar FyFy, = 31 — J + 8K From Prob. A2.13 we have

I:_=|1-«.]?|r,|= ) + DN 12
N JOR st eap Y3

{6y From Prob. A2.14, the projection vector Vi, is given by
\"F =W - (ﬂ)“
Ie]]

VN 2N+ 301+ =10 =2
™) A+ (=17 + (17 3

V=2 + M -Kj- (-l - J+K)
=2+ - K= (- §I+ {1 K] = + T - {K

A2 16 Criven vectors A and B that are placed tail to tail we define the perpendicular prejection of A onto B
o be the vector V shown in Fig. AZ-20. Find a formula for computing ¥ from A and B,

- }'

i

Fig. A2-I0
SOLUTION
W firgt find (see Fig A2-20)
A-B A-B
¥ = |Alcosifl) = A —— = ——

|AlB; B

Using the umit vectar
V=¥l

Since ¥ and B have the same direction, we have Uy = Uy, Hence

A-B B A-B
V=V =T T e

ALIT Let (3, 1, —3) be the coordinate of point 4. Find a point B on the line » = 2x in the o plane such
that the line connecting A and B is perpendicular 10 y = 2x.
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SOLUTION 1

Since poant B 16 on v = Ir, it has coondinates (x, 2r, 0). We intrchoce 1w vectors Wy and 'V, (see Fig.
AZ-21n

Wy =ul + Il
V=03 —a)l + (1 — 2} — 3K
The line comnecting A and B is perpendicular to vy = 2x if
Yy-Vy=0

M3 =)+l =2} =0

This yiehds ©(l — 1) = 0, Since the angle between the line ¢ = 2x and the line from the onigin to point A is
verifisbly not W, we have x # 0, Hence 1 = |, and the coordinates of point & are (1, 2,0).

-

Vol

¥,
A% 1L-3)

Fig. A2-21

SOLUTION 2

Referring to Fig, AZ-21, lei A he a vector whose tail 15 of the ongin snd whose bead is st point 4. From
Prob. AZ.16, we can see that VW, i3 simply the perpendicular projection of A onto V) iself Snce
A =314 J = 3K and ¥ = x1 + XcJ, the projection ¥V = V¥, & given by

ALY, el

Vi=— vV, =
TR AR

i+ eli=14+21

This means that the coordinates of point & are (1, 2,05

ALI1S Let a = |A] and & = [B|. Show that the vector

alB + hA
T oath

bisects the angle between A and B.
SOLUTION 1

aB + bA  ablliy + ball, ah
= = = = Ug <=1
a4 h @+ h ﬂ+1'!': LR

Since vector C 5 in the direction of the diagonal line of the diamond figare formed by the two oot vestors U,
and Ug (see Fig. A2-22), it bisects the angle beteeen U, and Uy, which is also the angle between A and B,
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SOLUTION 2
Let = be the angle between A and C, f be the angle between B and C, and ¢ = . We have
aB 4 hA
E“_A-E_"" a+bh aA-BHbA-A A B+ba
oo = ac ac T wele4 b)) T dat h)
and
B aB 4 bA
uuﬂ_ﬂ]—ﬂlc— a4+ b _aBb-B4bA-B abdA-B
ke ke © bele4 b))  clasb)

Comparing the ten sxpressions we pet coalx) = coslf), or a = fi.

AZ219 Prove the fommula ¥, - Vs = |V ||V cos(f), where ¥V, and V; are two vectors and © is the smaller
angle between ¥, and ¥, (when the vectors are placed tail to tail).

SOLUTION
Since V-V = |V}* for any vector V {see Prob. A2 3), we have (see Fig. AZ- 231
IV — ¥yl' = (V; = Vo) (¥, = ¥3)
=V, WV, =V =V (V, =V,;) (Prob. A1.20)
=¥, ¥ -2V, -V, + V.-V, (Prob. ALLY)
= [V =2V, W, 4 IV
O the aihier hand, wsing the Law of Cosines (see Sect AL 1), we have
[Vy = Vot = (Vg + [V — 21V, |V eos(8)
Commparing the two expressons we get ¥, - ¥y = [V, ||V;) cos({).

Fig. A2-23

AZ20 Use vectors to show that, if the two diagonals of a rectangle area perpendicular to each other, the
rectangle is a square.
SOLUTION
Let the kwaer left comer of the rectangle be at the origin and the upper right cormer be al (x, ¥)or (z, ¥, 0}

The two dizgonals of ihe reclangle can be expressed as ¥, = 1 + 1) and ¥; = xl — p). When the two
diagonals are perpendicular 1o each ofler, we have o — v = 0, or © = . Hence the neclangle is a square,
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AL {a) What three-dimensional line determines the homogensous coordinate point (1, 5, =117 (&) Do
the homogensous coordinates {1, 5, =13 and (=2, =10, =3) represent the same projective poini?

SOLUTION

{a} The line passes through the ongin (0, 0.0} and the Carbesian poind (1,5, <1). S0 x =1, y = 51, and
= = is the eguation of the line.

(4} The homopeneoas coordinates represent the same projective poant i and onby if the coprdingics are
proportional, i.e., there b some aumber ¢ g0 that —2 = (1, —10 = {54, and —3 = (-1}, Since there is
iy such pumiber, these coordinses represent differsnt projective paints.



Answers to Supplementary Problems

Chapter 2
242 Mo, since there is a change in aspect ratio (5735 # 6/4)
243 Yes, smee 52535 =6/4=15
244 Present the image at an aepect ratio that is lower than the original.
145 ot i, j, o, reb3k
for { § = 0; j = hewght; j++)
for (i = 0; § = width; +) |
petPinel{i, f, rpbl;
£ = (L3200 rpi{] + 0SET rgh 1] + 0144 %mgh]2];
setPixel(i, J, ek
H
Chapter 3
335
@) v=4x4+3 |x by y=lx4+0 |x
11 2 2 2
3l 7 7 T
7 1 | 1
(c) y=-3x—4 |x ) yve-2x+11 x
—10 2 -3 2
—25 ) -13 T
-7 1 -1 I
336 1. Compute the mdtial values. Prior to passing the variables to the line plotting routine, we exhange x and ¥
coordinates, (x. v) giving (v, xL
de =y =¥y fncy = 2dy _ _
dy = 1y =5y Incy = dy — dr) @ = dncy = dx
2. Bet (x, ) equal to the lower lefi-hand endpoimd and x5 equal to the largest value of x. If dy < 0, then
V=X K=V Ky =¥ I de = 0, then y =5, 3 =9, 80 = .
3. Plot a point at the carment (), &) coondinabes. Mote the coordinate values are exchanged before they are
passed to the plol rowtine,
4, Test o determine whether the entire line has been dram, If ¥ = x_;, stop.
5. Compuie the location of the nest pixel. If = 0, then f =d + e, If & = 0, then o = o + fres,
y=yl
6. locremem c:x=x+ 1.
7. Prior to plotmg. the {x, ¥) coordinates are agom exchanged. Plot a point at the current (x, ¥} coordinates.,
B, Go to step 4,
337 1. Set the initial values: (x,.y,) = stam of line; {xy, ) =end of line; &= @0y — 3 0/ — 20k
o = length of dash; ¢ = keneth of blank,
2. Test to sec whether the entire line has been drawn, If x; > x;, stop,

izl
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AMNSWERS TO SUPPLEMENTARY PFROBLEMS in

(F}) Step 3 should be changed o resd
. f
x = g cos({] - bsln[ﬂ +-|;|-:| + i

y= bsiml:ﬂjn+.:|:m|:ﬁl+g:] +k
(¢} Step 3 should be chanpad to nead
, n
x = g cos(ll] —&Eln{l!] +2:| B

¥= bs'u1[ﬂ‘}+uma{ﬂ +;]| +k

Miote that rotating an ellipse #,/2 requires only that the mapor and minos aves be imerchanged. Therefore, the
rotation could alss be sccomplished by changing step 3 o read

r=hbeosd oy =gsinif)

I. St imitial variables: g = radius, (&, k) = coordinates of sector center, #) = starting angle, 0, = ending
angle, and | = step size.

2. Plot line from sector center to coordinates of start of arc: plot (A, &) to (o cos{f, ) + A, asin(8, ) 4+ ).
Plot line from sector center to coordinates of cod of anc: plot Ok, &) 10 (o cos(iy ) + &, o sin{fs ) + k).
Phot e,

When a region is to be filled with a patienn, the fill algorithm must leok at & mble conixining the patiern befors
filling each pixel. The correct value for the pixel is taken from the whle and placed i the pinel examined by
the fll algorithm.

The buman brain fends 1o compensate for deficiensies i models. For example, although the cubs shown in
Fig. 8-2 iz lacking the visual cue, convergence, it is perceived as & cube. When the chowee of alinsing is
inconsistent, the bram either cannot decode the model or can decode it only with difficulty because there is no
ome fube that can be leasned 10 compensate for the inconsistencies of the models,

[~
N

Fig. &2
l. Imtialies the edpe list. Por each nonhonzontal édge, find 1/ml= Ax/AVL ¥opy - Vi 30d the x coondimate
of the edge’s lower endpoint.
Begin with the firet scan lins w.
If ¥ is beyond the lest scan line, siop.
Activate all MEH. wath ¥min = F and debete all Eriguﬁ for which ¥ Fra:
ot fhe miersection points by © vakue,
Fill the pixels batoeen and mcloding each pair of intersschon points,
Increment x by 1/m for each active edge.
Increment y by | and po to step 3.

L
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344  Ovenstoke can be elimmated by checking each pixel before writing to i [T the pixe] has abready been written
o, mo point will be wnitten. Or better yet, design scan-comverseon algonthms that do nod result in overstrike,

Chapier 4
4.19

cosfl  =simd cos(={fy  ~gin{=0) §} _ cos sl
H*‘{sinu mﬁ') and H'"'_{xin[—ﬁ'] -ma{—-E'})_(—shiﬂ me)

Ry -B_4

(n:u:-sﬂ =g i ( cos®f  smi
n f ok —gn oo

( (cos® 8 + sin® (1} {cos st - sln{l':nst-']) _ (l U)

{sin # cos 1 — cos B sin ) {sin” B + cos® §) oo

Therefiore, Ry and &_; are inverse, so £_y = R;'. In other words, the inverse of a rotation by & degrees is a
redation m the opposste directeon.

420 Magnification and reduction can be achieved by a uniform scaling of & wnits in bath the X and ¥ directions, If
5 = |, the scaling produces magnification, If 5 = 1, the result 15 a reduction, The transformation can be written
&

(%, ¥ == 5%, 3]

g Dy Fxy i
LA N R
{a) Choosing 2 = 2 and applying the transformation o the coordinates of the points A, B, C yelds the new

coordinates A°(0, 0), B{Z, 2), (10, 4).
(K) Here, x = | and the new coordinates are A"(0, 0), #(}, b, €', 1),

In matrix form, this becames

421 The line ¥ = © has slope | and ¥ miercept (0, 00 I point P has coordinates (x, ¥}, then folkswing Prob. 4. 10 we

e (2 3)6)-(

L]

) o Myn )= (n)

422  The rodation matrx i

Rys

|
S T
=~ g

The translstion matrix is

==
L= =]

[
S

o
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The matrix of verfes [4 B O] s

L 0 1
F=(1} i 1)
111
()
Vi (Z+1) (-2
T_T[ 2-I-I.)(1+1) |
By = 1 2 and TRy V= 1 o2
P 5 3 v
a0 1 | | |
Hnﬂum!‘nmﬂdumgamf(¥+],%.ﬂ'(—¥ |-¥).mdc"u,ﬂ:
]
V2 T W o2
T 77 7 viooo
B Ti=| 7 47 3 and Ryg ' Ty -V = 3.7
> 5 T R =D
o 0 1 11

The transformed coordinates are 4"(+/2, +2) B°(0, +2), and C¥(+/2/2, 34/2/2). From this we see that the
order in which the transformations are applisd = mportant m the formaton of composed ar concatenated
trarformations (see Fig. 5-1). Figure 5-3(&) reprezents the triangle of Fig. 5-3{a) afier application of the
ranaformation Ty - Ry, Fig. 5-3c) represents the same tnangle after the fransformation Ry, - 7).

y ¥ r

4.13

) * )

Fig. 5-3
To determine the coordinates of the displaced obpect from the cbserver's point of view, we must find the

coordinates of the object with respect io the observer's coordinate system. In our case we have performed an
object iranslation T, and & coordinate systern translation T, The result is found by the composition T, - T, (or

s ()= () (5227)=(2)

30 the coonrdinates have remained the same,
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424 We express the general form of an eguadion o the ' coondmate sysiem & Fiv', ) = U, Wrtng the
coordinate fransfrmation m equation form as

r =gl y) ¥ =rix, ¥
andl substinetng this into the expression for F, we get
Figlr, v), vz, v =0

which 15 an equation in 5 coonbinales,

435
SOLUTION 1
Let
Fye=i, Tdr d and Fyei, Dbt d
We have
Fo Tplevi=Thle+ v+ d=six+i, +L.v+0, +1)
and
Ty - Tplayy=T x+ b v+ =40 +6 v+t +14.)
Simce
Fi Py =i 4+ 0+ +5 M
we nlao have
Tosvdmyi=lo+t +1,, 0+ +16.)
Thercfore
Ty T, =Ty T =Tp op,
SOLUTION 2
Lt

F"'; "'!t.["H_I.J anid If": «lrrll+t“l

and express the ranslation transformations in matris ferm

&, I ¢ &
e =10 1 & arrd i",,:_ =8 1 [
0 0o 1 |
we have
Lo g Lo, L 0o, +r,
T TF. =(0 1 & b o =0 b &+
oo 1 G 0 i G 0 i
and
oo, 1 o & Lo 41,
To, Ty, =0 1 g, ol )= i b, +1i,
L ¥ d o 1 o 0 I
Also since

".I + F! = [rrI + Il:.." T+ rr\ll i ‘_;;.u
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4.9

4.30

ANSWERS TO SUFPLEMENTARY PROBLEMS

and

sin(x + ) = sin{x) cos(ff) + cos(a) sin(f)

B N m:+m —!i.l'l:':ﬂ."'lg} —
R:'RJ_HF'R’_(EiH[E'f.E] t{ﬂﬂﬂ-ﬁ'ﬂ})_&*ﬂ

First express scaling amd rodation in matrix form

5, 0 _ {costfl) —sin(f)
IlI'i:’l"'l - (':l .'i‘ll_,) and Ri - (El]'l':m m[ﬂ])

5 .m _{.r, u)_ cos{H) —ﬂn{m}_ 5, cos)  —z, sin(d)
TR0 5 ) enly  cosffl) ) N 5 sindf) s, cos(f)

- (0 ). (5 )~ (s )

and

In order to satisfy
I!i'll.rl ' R&' = Hi . S:.Jl

5, sy = sinifs,
This yields 6 = nz, where n is an integer, or £, = £, Which means that the scaling transfonmation is umiform.

(6 )G =0 120 1)
(l ?)(:} T)=(:: Eldi])#(!lr T)

A rotation followed by g simulianeous sheanng can be expressed as

cos(fl)  —sin{f) Yy (1 a’y _ fcos(f) = b-sin{t) a-cos(f) —sin{f)
(:in[ﬂ] ms{E}) ( l)_(!iu[H]+b-ma{H] a - sin(lf) + cos{if)

O the other hand, a simultapeows sheaning folkvwed by a rotation can be expressed as

(1 a'y [eos(f) —sin(@ Y _ [ cos(f)+a- sin(d) —sin[ﬂ'}+u--:=ua{ﬂ])
[ sinii  cos{@) J T\ bocod @+ sin(f) —b - sin(l) + cos()

In order for the two composite transformation matrices o be the same, we nesd
cos{f) — & - sin() = cos(f) + a - sin{t)

Mo, smoe

—b - ginff) = a - gin| )

which means § = nn, where n 15 ap migger, or a = —h
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4,33

434
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Consider the following sequence of mitste-scale—rotabe tansformations
b5 R (mu::} —xin[:l]) (:* ﬂ)_(ﬂmﬁ.ﬁ] -s.iruﬁ})
ek TR L sinfa) cosiz)) \ O 5, ) \sn(f)  cos(f)
(mﬁ[a} cosl i}z, —siniz) sin(fs, — cos{x) sin(fs, —sin(2)eodf)s, )
sin(x) cosi{Fir, + cos(x)sin(fs, —sinix)sini s, + cos(x)cosifs,

By equating the composite transfonmation matrix on the night-hand side 10 the matnx for a simultaneous
shearing transformation
( I @
o1

we have four equations that can be solved for paremeters o, 8, 5, and 5,

Consider the following sequence of shearing and scaling tranaformations:

| a g, 0% 1 0y fs4a-bes, oa-s,
o 1 f e 50 e 1 )T b5, %,
By equating the compogite transformation matrix. on the right to

B = cos(ll) —sin{i) )
L [ gin(d) cos {1}
we have

L gin(f) _ sinf{7) - t

T sl T eosiify’ T poally

5, = cos(il).

Consider the folleanng sequence of sheanng fmnsformations:

1 E]]. 1 0 .{] 5] _ |.+I3|-t? [|+ﬂ'|b}ﬂ1‘.'ﬂ]
oo {.': I) a1 ) h bay + 1

By eguating the composite ransformation matns on the aght o

B= (1.'4.1.1{-9'} —.u'r-{ﬂ]]l

"7 sinft)  cosill

we have

_ s .

i) =iy = ~amif) ad b = sgin(if)

Let CT¥, be the composite transformation matris representing the concatenation of » basic tansformation
matrices. We prove, by mathematical mduction on , that CTM, = alvays m the following form

a b ¢
d e f
oo

#=1: The basis case i3 tree since CTM, 8 simply a baske tmnsformation matnx, which fis into the given
icmplate,
n = b Buppose that CTM, is mdeed in the specified form,

o b oo
'CTH. = di. L _,|Ii
U |
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rl=.l:+l:‘ﬁ'=rnmx|'nmﬂ'ﬂ1.ﬂhl.+| ig in the same form:

a b ¢ a b ¢ -
CTMp =|d e F|-CTy={d e F|-{de & M
¢ 01 6 01 oo 1

ara+body abydbog a b fyte
= d a,te-dy d-5 +e-g, d-gp e +F
i ] i

435 Let Pyix), | ) be the tmasformation of P (x, %} and Py, #5) be the ransformation of Poixg, ). Also =
the compogite transformation be expresed os
i
d
1]

Xy =an +by +e ¥ =dn e +f

0oom O
—

we hive

and
¥ =ary + by o Vi=di e+

Mow consider an arbitrary point Pz, ) on the ling from P to P, We want to show that the transformesd P,
denoted by Pix", ¥}, where ' = ax + by + ¢ and ¥ = dy + ey + 7, 15 on the ling berween P and F. In other
winils, we wanl 1 show

¥B-n _n-y
4= %-¥
which is
diy + ey +f —dey gy =F _dnydenmdS—dr—av-f
g+ by e —an by —e @ +bydo-—an—by-c
and 15
d‘+e}" e d+e}"_}'
II_Il_ Ip==X
ﬂ+bH ﬂ+b£
Xy =X ;=X

Since (x, ¥) satisfies
Fr =¥ - -
np=fn &Khi=—i
we hve established the squality that sbows P being on the lime betwesn /; and /.

Chapter S

520 From Prob. 5.0 we meed only identify the appropriate paramesters.

(@) The window paramebers ane Wi, = 0, 6, = |, Wilg, = 0, and wy,,, = 1. The viewport parameters
W Oy ™ 0, B = V93, oy, = I, and tvp,, = 639, Thea &, = 199, 5, = 639, and

1949 0 o
W= 0 639 O
¢ 01

(b} The paramefers are the same, bt the device y coordinate is now 639 — v (see Prob. 28) instead of the v
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This is the matnix of the projected vertices, which can now be read off (see also Fig. 5-4).

A =(0,0,0) E = (..E,ﬂ. u)
n'“) F=(%u§-‘¥-“)

(A2 - (-2

re (152 e (ofin)

(&) Toprodoce 8 dimetric drowing, we procesd, as in part (a). by uging the dimetric transformation Pare from
Prob. 7.15. Choosing the projpection ratic of {:1:1 (Le. = 1), we have

¥I 414 13

i 6 6

VI =1
Par=] o Y& YL,
o z 2
8 0 0 0
o0 0 1

The projecied image coordinates are found by maltplying the matrices Par and V;
o Y2 WIHVIE VT VT VT /i Vi VBT
3 3 & 3
=l

Par ¥ =

=

=

= b

- e nlg e
|
—_ aw|:_5]-:n

L1} L
L L
I I

[

Fig. 54 Fig, 5-5
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4. Laft side plane—determined by the vectors J, and CL and the reference point L
5. Fronat {mear) plane—determined by the (view plane) normal vector N and the reference point Py
6, Bock far) plane-—determined by the pormal vector N and the reference point P,

Suppose that the plane passes through point Byixg, ¥g. 23) a0d has & oormal vector N = I + #:d + K Let
the points &y (x,. v, oy} amd Py, 5. 2, ) determine a line segment. From App. 2, the equation of the plane ks

my(x =) gy =yl mlr - nl=10
and the parametric equation of the line is
r=n+in -k y=p+hm-nht r=5n+im-np
Substibating these eguations fmlo the equations of the plane, we obinm
mylry e — o —xg] +mglyy + 0 -y -l bl - -] =0

Solving this for ¢ yields the parameter value ¢ ot the fime of intersection;
_myley — Xg) +malyy — yg) + gz — )

mply — )+ mplye — )+l — )
We can rewrite this using vector notation as

f|.'r

NP,
NFF

The miersection points flx,, 5, ;) can be found from the parsmetnic equaiions of the Hne:

t=—

Np =y 0 =3 Y=+ =n =2+ -5l

0 =g < 1, the intersection point [ 15 on the line segment from P to Py, if not, the intersection point is on
the extended line.

Chapter 9

2.9

210

Referring to Fig. 7-12 in Chap, 7, we defing a verlex list as
¥ = |[ABCDEFGH]
and an explicit edge list is;
E = {48 4D, AF. BC, BG, CD, CH, DE. EF . EH. Fti, GH)
Thee cube can be drawn by drawing the edges in list E. Referring to Prob, 9.2, we note that o typical polygon,
sy, [, con be represented in terms of its edges as
P, = [4B. 4D, BC, CD)

The polygons sharing a specific edge can be idemtified by extending the edge's represenation to imchude
pointers o those polygons. For exampbe:

AB—p P, 4D PP,

The knot s2t can be represented as o 0, <+ Loap 4+ 25,.... On the interval g =f+ (- 1)L to
fipa = By + 01 4+ 1)L, we have

x = [t + (i = 1] [tg + i+ 1] —x
{fg + L) = [rg + (i = 11] [t + (i 4 VL] = (8 + £L)

O the imterval [f, &, ], that B & 4 (i = 1L = x = iy + 1L, we hive B, ,ix) = | and 8, 5ix) = 0. On the
miervad (£, fazls that is, &y 4L = x = & < (i + 1)L, we have B g(x) = 0 and B, ; 3(x] = 1. Elsewhere bath

B lx) =

B, glx) +

Bya1.4lx)
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The last case (B = AC > 0) produces two ¢ valoes: ¢, and ¢,. 11, < 0 and & < 0, the negative extension of
the ray intersects the cylinder {no infersection by the rav) If one of the teo vaboes B 0, the ray staris from a
point on the cylinder and intersects the cylinder only if the other value is pogitive. If v, and ¢ daffer in signs,
the ry originates from inside the cylinder and inbersects the cylinder once, If both valees ane positive, the ry
intersects the cylinder taice (first enters and then exnts), and the smaller value comesponds to the intersection
point that is cloger to the slaring pomt of the ray,

Substitute B in Ar' + Br + O = 0 with D we have
AP+ Dr+ C=10

and the solution is

=

ol e O 4AC
24

Mow let [v = 284, the sbove equation becomes
AP + 21864+ C =0

and the selution 15

—28+ JIBY —44C 2B+ 2B _AC B+ B _AC
. E x — I,-!- - = P




Canonical chipping, 155
Cartesian coordinabes:
three-dimensional, 298
rwo-dimensional, 273
Cathode ray tube (CRT), 9
electrostatic deflection, 10
magmetic deflection, 10
Cavalier projection, 133
Cender of projection, 129
Character size, 43
pica, 45
point, 45
Chromaticity coordinates, 233
CIE chromaticity diagram, 232
CIE XY Z color modesl, 232
Circle:
Bresenham's circle algorithm, 31
eight-way symmetry, 29
midpoint circle algorithm, 33
Circle, equation of:
non-parametric, 3
parametnic, 31
Clamped spline, 150
Clippimg:
line, %1, 84, 170, 172
point, #1
potygon, 96
three-dirmensbonal, 155
two-dimensional, 91
Clipping categories, 91
Clipping planes, 155
back (far), 155
front {near), 155
Clipping window, 50
CMY color mode], 7
Coben-Sutherland line-clipping algorithm, 91, 170
Coherence, 204
area, 205
edge, 204
scan-line, 204
spatial, 05
Color gamut mapping, 233
Color map, 9
Color matching functions, 232
Color model:
additive, 7
CIE X¥YZ, 232
CuMY, 7
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Color modzl (Conmr, J; Depth comparison, 197
NTSC YIQ), 234 Depth valoe, 199
RGHB, 7 Device conrdinaie sysiem, 89
subiractive, 7 Dnffuse reflection, 235
Complex numbears, 16 Diigtal image, &
Compasing funetons, 284 Dimetric progection, 132
Composite fmosformation matnx (CTM), 75, 118 Direct coding, 8
Compression, 15 Derection of projectbon, 132
run-kength encoding (RLE), 15 Dsplay monitor, 9
Computer-buman inderaction, 4 Distance from a point to a plane, 306, 314
Concave polygon, 6 Distance formula, 273, 300
Connected: Drstnbuired ray-tracing, 261
d-connected, 42 [hthenng, 13
B-connected, 42 dither matrix, 13
Constant shading, 237 dither pattarm, 12
Control electrode, 10 Dot product, 280, 304
Control pomts, 151 Double buffering, 101
Comvex polygon, 96 Dropout, 48
Coons surfaces, 185
Coondinate system:
Cartesian coopdinates, 273, 200 Edge coberence, 24
homogeneeus, 307 Edige hist, 44
ledi-handed, 299 Electron guan, 10
polar coordinates, 277 Ellipss;
right-handed, 3% four-way symmetry, 33
three-dimensional, 298 midpoint ellipse algorithm, 37
two-dimensional, 273 Ellipse, equation of!
Copedinale ransformation, 68, 71, 117 nonspammetric, 35
imverie, 73 parametric, 36
mairix description, 74 Environment mapping, 261
reflection (see Refboction) Error diffusion:
ridation (ze¢ Rolation) Floyd-Steinberg, 13
scaling {vee Scaling) Excitation purity, 231
translaton {yee Translabion) E:Il:plil:it vertex hist, 176
viewing tmnsformation (zee Viewing Extent, 201
transformation]
Cross product, 304 Filtering, 49
Cross-section curve, 186 lrapass filtenng, 50
CRT {see Cathode ray tabe) post-fillering, 4%
CTM {see Composite transformation matrixy [pre-filteming, 25
Curve design, 176 Flicker, 10
Curve gegment, 177 Flood-fill, 42, 43
Curved surface, 176 Floyd-Steinberg ermor diffusion, 13
Curves, equation of, 300
explicit form, 300 Fluorescence, 10
impliciy form, 300 Fiscusing elecirode, 10
non-parametnc, M Font, 45
parametric, 300 bitmap, 43
Cyelic spline condition, 181 cuiline, 46
Cylinder surface, equation of, 302 TrueType, 49
Frume buffer, 10
Function [mapping, opemilor, tmnsformation), 2583
Deeflection: compaosition of, 284
clectrostatic, 110 domain, 283
magnetic, 10 graph of, 283
Depth buffer (zee S-buifer) mverse, 284

Drepab buffer alporithm (eee Z-buifer algosithm) mnadrix, 284



Function (mapgang, operson, ranslfommation) (Ceat
ramge, 2431
{hee also Compasing functions)

Ceometmic representation, 174
curved surface, | Th
curved surface pateh, 184
lomee, 174
pand, 174
pobygon, 174
polvgon mesh, |75
podyhedron, 176
polylne, 174
guadric surface, 1HS
wirelrame, 175

Ceometric transformation, 68, 114
matnx desenption, 74

Gouraud shading, 237

Graphics pipeline:
three-dimensional, 3, 159
twoedimensional, 2, Y9

Gy axis, 7

Gray-scale image, B

Cuiding nets, 184
Bezier—B-spline surfaces, |83
Bemer-Bemsiein surfaces, |84

Halftone, 12
Halftome approxmation, 12
Halftoning, 11
Hermitian cubic pehmomial mterpolaton, 179
Hidden surfaces, 197, 251
Homogeneous coordinates, 307
ideal point, 308
linez, 30°7
point, 75, 307
Hue, 23

ldeal point, 308
Hhsminang T, 233
Nhemimation madel, 4, 234, 15]
local, 4, 234
Elobal, 4, 234, 25]
lmage. &
[mage. represenation of:
direet eoding, B
lookup table, 9
Image files, 14
Image processing, 4
Image space, 1
Inside-putside test of view volumes, 158
Insicle test for polygons, %6
Instance, 76
nstance tramsformation, 76
[nstancing, 76
Inzerlaced, 14
Interlacing, 10

INDEX

Interpolating surface patches, 185
Coons gurface, |ES
lofted surface, 185
interpolation, 179
Hermitian eubic, 179
Laprange polynomial, 179
gpline, 180
Imterpolabive shading methods, (see Shading methads)
Intersection, computation of, 256
Inverse function, 254
inverse matnx, 182
[sometric propection, 132

Julia =215, 18

Enats (modes), 177
Eoch carve, 52, 65

Lagrnge potynormal, 177
interpolation, 179
Law of Cosines, 274
Left-right tesl, 56
Liang-Hamky line-clipping algorithm, 94, 172
Light, 229
Line, equation of:
parmmetre, 94
slope-intereept, 26
Line, scan-conversion of!
Bresenhiam's line alporithm, 27
digital differential algorithm (DDA), 27
Line clipping:
Cohen-Sutherland algorithm, 91, 170
mifpoint subdnizion, 93
Linng-Bamky algorithm, %4, 172
Line segment, 26
Linear blemding, 186, 195
Lofied surface, 185
Lofting, 185
Lookorp table, 9
Lswpass fileering, 50
Luminamce, 230

Mandelbaoe set, 16
Mathematical surfices, 2073
Mainces, 2E1
addition, 281
concatenation (see Matrix concatenation}
homageneous fonm, 308
identiny, 282
imwerse, 282
mmuliplication (see Matrix maltiplication)
scalar mubiplication, 281
irangpose, T2
Matrix concalenalion, 75, 281
(See alve Matnn mukhplhcation)
Matnx multiplication, 281
composition of matrix funclions as equivalent to,
284



Midpoint circle algorithm., 33
Mlidpoint ellipae algorithm, 37
Midpoint subdivision clipping algorithm, 93
Madelmg. 174
additrve, 176
salid 176
subiractive, 174
blonitor, 9
blotion bhur, 262

Matural coordinste vecior, 279, 303

Morural spline, 180

Mested instances, 76

Mormal vecior, 235, 238, M4

Mormalzation transformatiomn, S0

Normalized device coordinate system, B9

Mommalized perspective to parallel transform. 1498,
213

Mormalizing transformation for canonrical view
volomes, 157

MWTEC Y} eolor mode], 234

Object space, |

Obliges (paraliel) projection, 129, 132
Orsentation (right- and left-handed), 209
Orthographic (pamllel) projechion, 1249, 132
Chatling font, 46

Orversirike, 58

Painter algorithm, 200
Panning (see Animation )
Parallel projecticn, 132
axoppmetric, 132
cabinet, 133
cavaher, 133
dimetric, 132
isomstnic, 152
oblique, 132
orthographic, 132
trimetrie, 132
Parallel vectors, 278
Parametric equation, 300
carele, 31
curve, 300
lime, %4, 301
surface, 301
Persistence, L0
Perspective to parallel ransform, 198
Perspective anomalies, 130
perspective foreshortening, 130
wpalogicsl distartlan, 131
vanishing poants, 129, 131
view confusion, 131
Pemspective foreshonienmg, 129, 130
Perspective projectson, 129
one principal vanishing point, 141
three principal vanishing points, 142
two principal vanishing poinis, 141

345

Fhomg:
formala, 236
madel, 234
shading, 238
Fhosphar, 9
Phospharescence, 1{
Pica, 45
Picket fence problem, 48
Pinhole camera, 251
Fch, 11
Pixzl, 6
coondinates, f
PFixel phasing, 51
Flamar polygon, 173
Planes, equation of, 302
Paint chipping, 41
Paint Hight, X34
Polar coondinates, 277
Polygon, 6, 174
orendation, 9
Polypon clipping, 96
Sutherland-Hodorman alporithm, %6
Weiler-Atherion algonthm, 7
Palygon mesh, 175
Palyhedron, 176
faces of, 176
hidden swriaces of, 200, 22%
]-"|.1|.3.'|.ir|E. 174
Polymomial, 177
pscewise, 177
Pobymomial basis function, 177
Positively oriented polygon, W
Posi-filiering, 49
Pre-filicring, 49
Pricnary ray, 252
Principal vanishing poant, 12%
Frimter, 11
Projected texture, 239
Projection, 128
center of, 129
classification of, 129
direction of, 132
(5w alve Parallel projection; Perspective projection)
Projection of a vector onto a plane, 316
Projection plane, |28
Projective plane, 307
Projector, 128

Cesdrie surfaces, 302
equeations of, 184

Raster, 6

Rastenzation, 25

Ray, 251
primary, 252
reflected, 252
secondany, 232



346

Ry { s, )
shadow, 252
transmitted, 352
Ray, vector representation of, 153
Ray tracing, 251
adapiive depth control, 259
bounding wolunie extension, 2539
hieraschy of bounding valumes, 259

spatial coherence fspatial subdivision, 260

Ray-surface miersection, 256
arbitrary plane, 256
coordinate system plane, 256
wylinder, 272
elliptic pambalond, 268, 260
general implicil surface, 258
repian, 263
sphere, 257

Recepsor cells, 231
oomes, 331
masds, 231

Reflecied ray, 252

Beflection, 235
bharry, 262
diffuse, 235
specylar, 235
three-dimensional, 124, 125, 244
teen-dimensional, 70, &1, &2

Reflection coefficients, 235

Refresh, 10
interkacing, 10
refreshing rute, 11

Region code, 52

Region filling, 42
boundary-fll, 43
flond-fill, 43
scan-line, 44

Resolution, &

Fetrace, 10
horizanial, 10
wertical, 16

RGB eolor maodel, 7

Rotation, 69, 115
thres-<dimenssonal, 115
two-dimensional, 6%, 72, TH, 79

Run-length epcoding (KLE), 15

Saturation, 231

Scaling, T, 115
bomogengous, 70
magnificatien, 70, 115
reduction, 70, 115
three-dimensional, 115
mwo-dimensional, T, T2, 73
uniforen, 70

Scan conversion, 25
characiers, 45
cirches, 19

Scan conversion {Conl. ]
cllipses, 35
incremiental methods, X7
lines, 26
points, 25
potygons, 42
rectangles, 41
sectors amd arcs, 40
Sean-line algorithms:
for hidden surfsce removal, 203
fior n,.-pm'l ﬂl“l‘lil a4
Scan-hine coherencs, 204
Secondary my, 252
Shading methods, 236
constant, 237
Giearand, 237
Phong, 238
Shndow mask, 11
Shadow ray, 252
Shearing transformation, 83
Side of a plane, 302, 312
Sicrpinski gasket, 52, 66
Soell’s law, 252, 271
Soft shadew, 262
Solid modeling, 176
Solid texture, 240
Spatia] coberence, M5, 2640
Spatial subdpasion, 26
Spectral energy distribution function, 229
Speciral reproduction, 229
Specular reflection, 215
Sphines, 180
anticyelic, 1R
clamped, 180
cubic, T8
cyclic, THI
matural, LR
quadrstic, 180
Standand perspective projection, 1340
Swmndard white Dy, 243
Stechastic Supersampling, 261
Subdivigion algoritkms, 93, 207
Supersampling, 50, 260
adaptive, 261
slochastc, 241
Surface patch, 185
[See alvo Interpolating surface patches)
Burfaces, equations of, 30
cylinder, 302
explicit fiosm, 301
implicit form, 302
mom-parametrie, 301
pamnth'il:.. 2
planes, 302, 36, 312, 313, 314
quadric surfaces, 156, 302
sphere, 157, 309

Sutherland-Hodgman pelygon-clipping algorithm, 9%



Terrain generation, 159
Textare, 4, 239

mapping, 240, 248, 249 250

projected, 239

solid, 240
Textare rmap, 239
Theee-dispensional transfosmations, |14
Three-thrmenstonal viewing, (51
Tiltng transformation, 118
Transformation, 68, 114

composite, 73, 117

coordinate, 68, 117

gopmetric, 68, 114

ingtance, 76, 108

mrraalizaion, ‘M

viewing, ¥, 158

workstaton, W
Transformaton matrix, 74, 1135
Transforming curves and surfaces, 186
Translation, &%, T2, 114

matrix, form, 75, 115

three-dimenstonal, 114

ton-dimensional, 69, T2
Translation vector, 6%, 72, 114
Translucency, 262
Transmitted ray, 252
Trichrnatic genemlization theory, 231
Trimetric projection. 132
Trae color representation, §
TraeType font, 49
Teo-dimensional transformations, 68
Typeface, 43

'I._.lm:qu.p] 'I;n'iil'lmm. a7
Linst vecior, 304

Lip vegtor, 152

LUser interface, 4

anishing poins, 129, 131
Vector companetta, 279, 303
Vector equatian of:

line, 305

planz, 306

ray, 133

347

Vector aquation of {Cont )
sphere, 257
Wectors, 278, 303
addition, 27K
angle between, 260
cross product, 34
dot prosduct, 280, 304
length {magninede), 278, 304
mirraal, J06
orthogoaal, 280, 203, 3, W9, 319
pamilled, 278
umit, 34
Verten list, 174
View plane, 128
View plane coordinasie sysiem, 152
View plane noreml, 151
View reference point, 129
Yiew volume, 151, 154
canomical, 157
parallel, 154
peerspective, 154
Viewing coonbinate system, 89, 152
up vector, 152
Viewing transfonmation, 90, 158
normalization transformation, 90
three-dimensional, 158
te=-dimensional, 90
Wiewpart, 89
Virtual display device, 89
Visible polvgon face, 227

Wavelength, 229
daminant, 230
Weiler-Atherion polygon-clipping algenthm, 97
Window, B9
Window-fo-viewport mapping, 9
Wirefrume, 175
Workstation transformation, 9
World coordinate system, B9
Wright algorithm for mathematical swrfaces, 211

L=huffer, 194
Z-buffer algonthm (depth buffer algorithm), 199
Zooming (see Animation)
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Master the fundamentals of computer graphics
with Schaum’s—the high-performance study
guide. It will help you cut study time, hone
problem-solving skills, and achieve your

personal best on exams! OVER 30 MILLION SOLD
Students love Schaum's Outfines because they produce resulls.
Each year, hundreds of thousands of studants improve thedr test : :
scores and final grades with thess indispensable study guides. Related Titles in
. i
Get the edge on your classmates. Use Schaum's! Schaum's Qutlines

H you don't have a lot of time, but want to excel in class, this Eﬂl‘r‘lpulll‘lg
book helps you:

* Uze detailed examples to solve problems

* Brush up before tests

* Find answers fast

* Study qulckly and more effectively

* Get the big picture without spending hours poring over

lengthy textbooks

Schaum's Qutlines give you the information your lsachers expect you
o know in a handy and succinct formal —without overwhelming you
with unnecessary jargon, You get a complete overview ol the subject
Plus, you gel plenty of practice exercises to lest your skill. SN :
Compalible with any classroom text, Schaum's lel you study at your Unuameniais §
awn pace and remind you of all the important facts you need to with Le++
remember—fast! And Schaum's are so complete, they're perfect for
praparing for graduale or professional exams

Inside, you will find: i

* Full coverage of Computer Graphics, from the traditional 20 to int On 10 LompLuter
the recan 10 advances

* Simplified explanations of the algorithmic aspects of image
synihasis

* Hundreds of sohad problems in computer graphics, ncluding
slep-by-step annotations

= Examples and worked problems that help you mastes computer
graphics

If you want top grades and a thorough understanding of comiputer
graphics, this powerful study ool is the best ubor you can have?

Fundamenials ol SOL
WJrAMmImIng

Chapters include: Introduction * Image Representation * Scan
Conversion * Two-Dimensional Transformations * Two-Dimensional
Viewing and Chipping * Three-Dimensional Transformations

* Mathematics of Projection = Three-Dimensional Viewing and
Clipping * Geometric Aepresentation * Hidden Surfaces * Color and
Shading Models * Ray Tracing * Appendixes include: Mathematics
for Two-Dimensional Computer Graphics * Mathematics for Three- FORTRAMN 90
Dimenzional Computer Graphics

Programming with
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