Computer Graphics

Lecture-00

Md Imtiaz Ahmed Lecturer,DIIT

11/15/2021

Primary Focus

Develop thinking ability.

- problem solving skills.
- formal thinking.

Goals

- Be very familiar with a collection of *Computer Graphics algorithms*.
- Be intimately familiar with mathematics for Computer Graphics
- Be able to *apply* techniques in practical problems.

Textbook & References

• Schaum's ouTlines series, THEORY AND PROBLEM OF COMPUTER GRAPHICS, Second Edition, McGraw Hill.

Computer Graphics Chapter 3 Scan Conversion Lecture-01

Md Imtiaz Ahmed Lecturer,DIIT

11/15/2021

Scan Conversion

- Graphics System convert
 - each primitive(points ,lines, circles, ellipses etc.)
 from its geometric definition into a set of pixels
 that make up the picture in the image space.
 - This Conversion task is referred to as Scan Conversion.

Scan Converting a point

- (x,y) where x and y are real numbers within an image area.
- Need to be scan converted at pixel location
 (x', y')

Scan Converting a line

- Line drawing is accomplished by calculating intermediate positions along the line path between two specified end points.
- It is defined by the line equation y=mx+b, m is slope and b the y intercept of the line.
- Two end points are p1(x1,y1) and p2(x2,y2)
- Line equation describes the coordinates of all the points that lie between the two end points.

Direct use of the Line Equation

- Scan convert p1 and p2 to pixel coordinates (x'_1, y'_1) and (x'_2, y'_2) then set $m = (y'_2 - y'_1)/(x'_2 - x'_1)$ and $b = y'_1 - mx'_1$.
- *If* $|m| \le 1$, then for every integer value of x between and excluding $x'_{1}andx'_{2}$ calculate the corresponding value of y using the equation and scan convert (x,y).
- *If* $|m| \ge 1$, then for every integer value of x between and excluding $y'_{1}andy'_{2}$ calculate the corresponding value of x using the equation and scan convert (x,y).

DDA Algorithm

- The digital differential analyzer (DDA) is an incremental scan-conversion method.
- Characterized by Performing calculations at each step using results from the preceding step.
- At each step i calculate (xi,yi) point on the line.
- Next point (xi+1,yi+1)
- $\Delta y / \Delta x = m$, where $\Delta y = y_{i+1} y_i$ and $\Delta x = x_{i+1} x_i$, We have

$$y_{i+1} = y_i + m\Delta x$$

or
$$x_{i+1} = x_i + \Delta y / m$$

DDA Algorithm

DDA Algorithm

- DDA ("Digital Differential Analyzer")
- Assume $0 \le m \le 1$.

$$y_{i+1} = mx_{i+1} + B$$

= $m(x_i + \Delta x) + B$
= $y_i + m\Delta x$
 $y_{i+1} = y_i + m \quad [\Delta x = 1]$

DDA ALGORITHM

- DDA algorithm is faster than the direct use of the line equation since it calculates points on the line without any floating point multiplication
- Cumulative error occurs.