Chapter 3
Scan Conversion
Lecture-02

Prepared By-
Md Imtiaz Ahmed

Bresenham’s Line Algorithm

» Bresenham’s line algorithm

— Is a highly efficient incremental method for scan-
converting lines.

— |t produces mathematically accurate results
using only integer addition, subtraction and
multiplication by 2, which can be accomplished
by a simple arithmetic shift operation.

Bresenham’s Line Algorithm

Scan convert the line in the Figure,
0<m<1.

Start with pixel P1(x",y").

Choose either the pixel on the right or the
pixel right and up.

The coordinates of the last chosen pixel
upon entering step i are (x,y').

Choose the next between the bottom pixel
S and the top pixel T.

If the chosen pixel is the top pixel T (d'= 0)
then x*1= x+1 and y*'=y'+ 1 and so

d*'=d+ 2 (Ay - Ax)

Vi+l

¥i

Bresenham’s Line Algorithm

If the chosen pixel is pixel S (d'< 0) then
x"*1=x'+1 and y*1=y'and so

d*l=d'+ 2Ay
where d'= 2Ay * x'- 2Ax * y' +C
and C=2Ay + Ax (2b - 1)

We use here a decision variable d'. For
the value of each d'we calculate the
corresponding value of d"*!. Yol

o

Zit+]

Bresenham’s Line Algorithm

Void Bresenham()

{

Line 1: dx=x2-x1;
Line 2: dy=y2-y1;
Line 3: dT=2*(dy-dx);
Line 4: dS=2*dy;

Line 5: d=(2*dy)-dx;
Line 6: putpixel(x1,y1);
Line 7: while(x1<x2)
Line 8: {

Line 9: x1++;

Line 10: if(d<0)

Line 11: {

Line 12: d=d+dS;

Line 13: putpixel(x1,y1);
Line 14: }

Line 15: else

Line 16: {

Line 17: y1++;

Line 18: d=d+dT;

Line 19: putpixel(x1,y1);
Line 20: }

Line 21: }

Line 22: putpixel(x2,y2);
}

Scan-Converting a Circle

(—y,x) (y,x)

(=%,5) G50 3G y)

h -
»

(=x, =) (x, =)

(_ya _X) (ya _X)

Figure 3-18

Symmetry of a circle. Calculation of a circle point (x, y)in one octant
yields the circle points shown for the other seven octants.

Computer Graphics with Open GL, Third Edition, by Donald Hearn and M.Pauline Baker.
ISBN 0-13-0-15390-7 © 2004 Pearson Education, Inc., Upper Saddle River, NI. All rights reserved.

Midpoint Circle Algorithm

We will first calculate pixel positions for a circle centered around the origin
(0,0). Then, each calculated position (x,y) is moved to its proper screen
position by adding xctoxand yctoy

Note that along the circle section from x=0 to x=y in the first octant, the
slope of the curve varies from 0 to -1

Circle function around the origin is given by
feircle(x,y) = x? +y2 —r?

Any point (x,y) on the boundary of the circle satisfies the equation and
circle function is zero

Midpoint Circle Algorithm

* Forapointin the interior of the circle, the circle function is negative and
for a point outside the circle, the function is positive

* Thus,

C|rcle

_ furcle(x y) -
(x,y) > 0if (x,y) is outside the circle boundary

C|rcle

yi . o
: o 7
- - / - -
Midpoint xi xi+1 Xi+3

(x,y) < 0if (x,y) is inside the circle boundary
0 if (x,y) is on the circle boundary

X2+y2-r2=0

Midpoint between candidate
pixels at sampling position
Xx:+1 along a circular path

Midpoint Circle Algorithm

Assuming we have just plotted the pixel at (x,y,) , we next need to
determine whether the pixel at position (x; + 1, y-1) is closer to the circle

Our decision parameter is the circle function evaluated at the midpoint
between these two pixels

P; = fonce (X +1, y-1/2) = (x; +1)? + (y,-1/2)? — r?

If p. < 0, this midpoint is inside the circle and the pixel on the scan line y; is
closer to the circle boundary. Otherwise, the

mid position is outside or on the circle boundary, and we select the pixel on
the scan line y-1

Midpoint Circle Algorithm

* Successive decision parameters are obtained using incremental
calculations

P i+1 = circ/e(Xi+1+11 y i+1_1/ 2)
= [(X;,)+ + (Vi -1/2)7 —r*

OR
P.,,=P+2(x+1) +(y.,.°—y?)—(y+1-y)+1
iWhere y.,, is either y. or y, ; depending on the sign of p,
* Increments for obtaining P, .:

j+1°

2x,,,+1 if p; is negative

i+1

2X.

i+1

+1-2y,,, otherwise

Midpoint circle algorithm

* Note that following can also be done incrementally:
2X,,, = 2X+2
2V =2y~ 2

e At the start position (0,r), these two terms have the values 2 and 2r-2
respectively

* |nitial decision parameter is obtained by evaluating the circle function
at the start position (x0,y0) = (0,r)

Po=frircel1, r-1/2) = 1+ (r-1/2)?-r?
OR
P,=5/4-r
* Ifradius ris specified as an integer, we can round p, to
po=1-r

Midpoint circle algorithm

Int x=0,y=r,p=1-r;
While(x<=y)

{

setPixel(x,y);
If(p<0)
D=p+2X+3;
Else

{
P=p+2(x-y)+5;
Y--,

}

X++;

}

Midpoint Circle Algorithm

* Implicit of equation of circle is:

x2+y2-R?2=0

* Eight way symmetry = require to calculate one

octant

* Define decision variable d as:

d=F(M)=F(x,+Ly,—3

=(x, +1f +(y, -3 -R°
d<0

=M is 7nside Circle
= Choose E

d>0

=M is outside Circle

= Choose SE

P= (Xpr Yp)

d=0

— Choose either

= we choose E

a

(-y,x \(y,X)
|]
(_YI _X)Q / (Y: _X)
\ /
,_‘,_7__7_7._,/ /
(-x,-y) (X, V)
(X, +Ly, - 1) (X, +2,y, - 1

n

X
o
+

o

Previous x
Current

Next

oy

p

—Yp~
1

%

Midpoint Circle Algorithm

* |If d <=0 then midpoint mis inside circle
— we choose E
— Increment x
— y remains unchanged

d=(x, +1f +(y, ~1f R Peowd

2

doow = F(X, +2,y,—3) Yo~

2

2 2 2 | A
= (Xp T 2) T (yp _%) -R Xp Xptl Xp+2 ;p
3 c
ooy —d =2Xx,+3 e g 2
— a O

AE

d., =d+AE

Midpoint Circle Algorithm

* |fd>0then midpoint m is outside circle
— we choose E
— Increment x

— Decrementy (X, +Ly,—2) (X, +2,y, -3

d:(xp+1)2+(yp—%)2—R2 d> 0

Nv/e
\

d.., = F(xp +2,Y, —3

2
:(Xp +2)2 +(yp _%)2 -R?
doew —d =2X, -2y, +5

ASE

d.,=d+ASE

Midpoint Circle Algorithm

Initial condition

« Starting pixel (0, R)

* Next Midpoint lies at (1, R — %)
 dy=F(1,R-%)=1+(R?>—R+%)-R?=>/,—-R
* To remove the fractional value >/, :

— Consider a new decision variable has, h=d-%

— Substituting d for h + %,
« dy=>/,-R=>h=1-R
e d<0 =h<-%= h<0

e Since h starts out with an integer value and is incremented by integer
value (AE or ASE), e can change the comparison to just h <0

Midpoint Circle Algorithm

void MidpointCircle(int radius, int value) {
int x=0;

inty = radius ;
intd=1-radius ;
CirclePoints(x, y, value);
while (y > x) {
if (d<0){ /* Select E */

d+=2*x+3;
} else { /* Select SE */

d+=2*(x—y)+5;
y—-

CirclePoints(x, y, value);

