
Chapter 3
Scan Conversion

Lecture-02

Prepared By-
Md Imtiaz Ahmed



Bresenham’s Line Algorithm

• Bresenham’s line algorithm

– is a highly efficient incremental method for scan-

converting lines.

– It produces mathematically accurate results 

using only integer addition, subtraction and 

multiplication by 2, which can be accomplished 

by a simple arithmetic shift operation. 



Bresenham’s Line Algorithm

• Scan convert the line in the Figure, 

• 0<m<1. 

• Start with pixel P1(x1,y1).

• Choose either the pixel on the right or the 

pixel right and up. 

• The coordinates of the last chosen pixel 

upon entering step i are (xi,yi).

• Choose the next between the bottom pixel 

S and the top pixel T. 

• If the chosen pixel is the top pixel T (di ≥ 0) 

then xi+1 = xi+1 and yi+1 = yi + 1 and so 

• di+1 = di + 2 (Δy - Δx) 

p1

p2



Bresenham’s Line Algorithm

• If the chosen pixel is pixel S (di < 0) then 
xi+1= xi+1 and yi+1 = yi and so 

• di+1 = di + 2Δy 

• where di = 2Δy * xi - 2Δx * yi +C 

• and C = 2Δy + Δx (2b – 1) 

• We use here a decision variable di . For 
the value of each di we calculate the 
corresponding value of di+1 .

p1

p2



Bresenham’s Line Algorithm
• Void Bresenham( ) 

• { 

• Line 1: dx=x2-x1; 

• Line 2: dy=y2-y1; 

• Line 3: dT=2*(dy-dx); 

• Line 4: dS=2*dy; 

• Line 5: d=(2*dy)-dx; 

• Line 6: putpixel(x1,y1); 

• Line 7: while(x1<x2) 

• Line 8: { 

• Line 9: x1++; 

• Line 10: if(d<0) 

• Line 11: { 

• Line 12: d=d+dS; 

• Line 13: putpixel(x1,y1); 

• Line 14: } 

• Line 15: else 

• Line 16: { 

• Line 17: y1++; 

• Line 18: d=d+dT; 

• Line 19: putpixel(x1,y1); 

• Line 20: } 

• Line 21: } 

• Line 22: putpixel(x2,y2); 

• } 



Scan-Converting a Circle



Midpoint Circle Algorithm

• We will first calculate pixel positions for a circle centered around the origin 
(0,0). Then, each calculated position (x,y) is moved to its proper screen 
position by adding xc to x and yc to y

• Note  that along the circle section from x=0 to x=y in the first octant, the 
slope of the curve varies from 0 to -1

• Circle function around the origin is given by

fcircle(x,y) = x2 + y2 – r2

• Any point (x,y) on the boundary of the circle satisfies the equation and 
circle function is zero



Midpoint Circle Algorithm

• For a point in the interior of the circle, the circle function is negative and 
for a point outside the circle, the function is positive

• Thus,

– fcircle(x,y) < 0 if (x,y) is inside the circle boundary

– fcircle(x,y) = 0 if (x,y) is on the circle boundary

– fcircle(x,y) > 0 if (x,y) is outside the circle boundary

yi

Yi-1

xi xi+1 Xi+3Midpoint

X2+y2-r2=0

Midpoint between candidate 
pixels at sampling position 
xi+1 along a circular path



Midpoint Circle Algorithm

• Assuming we have just plotted the pixel at (xi,yi) , we next need to 
determine whether the pixel at position (xi + 1, yi-1) is closer to the circle

• Our decision parameter is the circle function evaluated at the midpoint 
between these two pixels

pi = fcircle (xi +1, yi-1/2) = (xi +1)2 + (yi -1/2)2 – r2

If pi < 0 , this midpoint is inside the circle and the pixel on the scan line yi is 
closer to the circle boundary. Otherwise, the 

mid position is outside or on the circle boundary, and we select the pixel on 
the scan line yi-1



Midpoint Circle Algorithm

• Successive decision parameters are obtained using incremental 
calculations

Pi+1 = fcircle(xi+1+1, yi+1-1/2)

= [(xi+1)+1]2 + (yi+1 -1/2)2 –r2

OR

Pi+1 = Pi+2(xi+1) + (yi+1
2 – yi

2) – (yi+1- yi)+1

iWhere yi+1 is either yi or yi-1 depending on the sign of pi

• Increments for obtaining Pi+1:

2xi+1+1 if pi is negative

2xi+1+1-2yi+1 otherwise



Midpoint circle algorithm

• Note that following can also be done incrementally:

2xi+1 = 2xi+2

2 yi+1 = 2yi– 2

• At the start position (0,r) , these two terms have the values 2 and 2r-2 
respectively

• Initial decision parameter is obtained by evaluating the circle function 
at the start position (x0,y0) = (0,r)

p0 = fcircle(1, r-1/2) = 1+ (r-1/2)2-r2

OR

P0 = 5/4 -r

• If radius r is specified as an integer, we can round p0 to

p0 = 1-r



Midpoint circle algorithm

Int x=0,y=r,p=1-r;
While(x<=y)
{
setPixel(x,y);
If(p<0)
p=p+2x+3;
Else
{
P=p+2(x-y)+5;
y--;
}
x++;
}



Midpoint Circle Algorithm
• Implicit of equation of circle is: 

x2 + y2 - R2 = 0

• Eight way symmetry  require to calculate one 
octant

• Define decision variable d as:

( ) ( )

SE Choose 

Circle outside s 

E Choose 

Circle inside s 













−−++=

−+==

iM

d

iM

d

Ryx

yxFMFd

pp

pp

0

0

1

),1()(

22

2
12

2
1

P=(xp, yp)

M

E

xp+1xp xp+2

P
re

v
io

u
s

C
u
rr

e
n
t

N
e
x
t

),1(
2
1−+ pp yx ),2(

2
1−+ pp yx

M

E

yp

yp –
1 

yp –
2

S
E

M

SE

E choose we

either Choose 

0d





=



Midpoint Circle Algorithm
• If d <= 0 then midpoint m is inside circle

– we choose E

– Increment x

– y remains unchanged

( ) ( )

( ) ( )

Edd

xdd

Ryx

yxFd

Ryxd

new

E

pnew

pp

ppnew

pp

+=

+=−

−−++=

−+=

−−++=




32

2

),2(

1

22

2
12

2
1

22

2
12 P=(xp, yp)

M

E

xp+1xp xp+2

P
re

v
io

u
s

C
u
rr

e
n
t

N
e
x
t

),1(
2
1−+ pp yx ),2(

2
1−+ pp yx

M

E

yp

yp –
1 

yp –
2

d <  0



Midpoint Circle Algorithm
• If d > 0 then midpoint m is outside circle

– we choose E

– Increment x

– Decrement y

( ) ( )

( ) ( )

SEdd

yxdd

Ryx

yxFd

Ryxd

new

SE

ppnew

pp

ppnew

pp

+=

+−=−

−−++=

−+=

−−++=




522

2

),2(

1

22

2
32

2
3

22

2
12

P
re

v
io

u
s

P=(xp, yp)

M
S
Exp+1xp xp+2

C
u
rr

e
n
t

N
e
x
t

),1(
2
1−+ pp yx ),2(

2
3−+ pp yx

M

SE

yp

yp –
1 

yp –
2

d >  0



Midpoint Circle Algorithm

Initial condition

• Starting pixel (0, R)

• Next Midpoint lies at (1, R – ½)

• d0 = F(1, R – ½) = 1 + (R2 – R + ¼) – R2 = 5/4 – R 

• To remove the fractional value 5/4 :
– Consider a new decision variable h as, h = d – ¼

– Substituting d for h + ¼, 

• d0=5/4 – R  h = 1 – R

• d < 0  h < – ¼  h < 0

• Since h starts out with an integer value and is incremented by integer 
value (E or SE), e can change the comparison to just h < 0



Midpoint Circle Algorithm
void MidpointCircle(int radius, int value) {

int x = 0;

int y = radius ;

int d = 1 – radius ;

CirclePoints(x, y, value);

while (y > x) {

if (d < 0) { /* Select E */

d += 2 * x + 3;
} else { /* Select SE */

d += 2 * ( x – y ) + 5;

y – –;

}

x++;

CirclePoints(x, y, value);

}

}


