
Computer Graphics

Lecture-07
Two –Dimensional Viewing and Clipping

11/15/2021

Md Imtiaz Ahmed
Lecturer,
DIIT

Introduction
❑ window

▪ a world-coordinate area selected for display

▪ define what is to be viewed

❑ view port

▪ an area on a display device to which a window is mapped

▪ define where it is to be displayed

▪ define within the unit square

▪ the unit square is mapped to the display area for the
particular output device in use at that time

❑ windows & viewport

▪ be rectangles in standard position, with the rectangle
edges parallel to the coordinate axes

❑ viewing transformation

▪ the mapping of a part of a world-coordinate scene to
device coordinates

▪ 2D viewing transformation = window-to-viewport,
windowing transformation

Introduction

❑ viewing-transformation in several steps

o construct the world-coordinate scene

o transform descriptions in world coordinates to viewing
coordinates

o map the viewing-coordinate description of the scene to
normalized coordinates

o transfer to device coordinates

Introduction

❑ viewing-transformation

▪ by changing the position of the viewport

✓can view objects at different positions on the display
area of an output device

▪ by varying the size of viewports

✓can change the size and proportions
of displayed objects

✓zooming effects

Introduction

❑ The composite 2D transformation to convert world
coordinates to viewing coordinates

MWC,VC = R • T

Viewing coordinate reference frame

Window-to-viewport coordinate transformation

❑ transfer to the viewing reference frame

▪ choose the window extents in viewing coordinate

▪ select the viewport limits in normalized coordinate

❑ to maintain the same relative placement in the viewport as in the window

❑ Thus Where,

minmax

min

minmax

min

xwxw

xwxw

xvxv

xvxv

−

−
=

−

−

minmax

min

minmax

min

ywyw

ywyw

yvyv

yvyv

−

−
=

−

−

syywywyvyv

sxxwxwxvxv

)(

)(

minmin

minmin

−+=

−+=

minmax

minmax

minmax

minmax

ywyw

yvyv

xwxw

xvxv

sy

sx

−

−

−

−

=

=

Window-to-viewport coordinate transformation

• Eight coordinate values that define the window and the
viewport are just constants.

• Express these two formulas for computing (vx,vy) from
(wx,wy) in terms of a translate-scale-translate transformation
N.

• where
















=
















11

wy

wx

vy

vx









































−

−

−

−

















=

1 0 0

- 1 0

- 0 1

.

1 0 0

0 0

0 0

.

1 0 0

 1 0

 0 1

N min

min

minmax

minmax

minmax

minmax

min

min

yw

xw

xwxw

xvxv

xwxw

xvxv

yv

xv

2001. 7. 13 9

Clipping Operations

• Clipping
– Any procedure that identifies those portions of a picture

that are either inside or outside of a specified region of
space

• Applied in World Coordinates

• Adapting Primitive Types
– Point

– Line

– Area (or Polygons)

– Curve

2001. 7. 13 10

Point Clipping

• Assuming that the clip window is a rectangle in standard
position

• For a clipping rectangle in standard position, we save a 2-D
point P(x,y) for display if the following inequalities are
satisfied:

• If any one of these four inequalities is not satisfied, the point
is clipped (not saved for display)

• Where define the clipping window.

maxmin

maxmin

yyy

xxx





maxminmaxmin ,,, yyxx

P(x,y)

ywmax

ywmin

xwmin xwmax

If P(x,y) is inside the
window?

maxmin

maxmin

ywyyw

xwxxw





Point Clipping

Line clipping

• Line clipping procedure

o test a given line segment to determine whether it lies
completely inside the clipping window

o if it doesn’t, we try to determine whether it lies completely
outside the window

o if we can’t identify a line as completely inside or completely
outside, we must perform intersection calculations with one or
more clipping boundaries

Line clipping

• Checking the line endpoints ⇒ inside-outside test

• Line clipping

➢ Cohen-Sutherland line clipping

➢ Liang-Barsky line clipping

Cohen-Sutherland Algorithm

• Divide the line clipping process into two phases:

– Identify those lines which intersect the clipping window
and so need to be clipped.

– Perform the clipping

• All lines fall into one of the following clipping categories:

– Visible: Both end points of the line lie within the window.

– Not visible: The line definitely lies outside the window.
This will occur if the line from (x1,y1) to (x2,y2) satisfies
any one of the following inequalities:

– Clipping candidate: the line is in neither category 1 nor 2
min21min2,1

max21max2,1

,

,

yyyxxx

yyyxxx





21 pp

is in category 1(Visible)
is in category 2(Not Visible)
is in category 3(Clipping candidate)

43 pp

1098765 ,, pppppp

Cohen-Sutherland Algorithm

y < ymax y > ymin

x > xmin x < xmax

=interior

xmin xmax

ymin

ymax

Cohen-Sutherland Algorithm

• Assign a four-bit pattern (Region Code) to each endpoint of the given
segment. The code is determined according to which of the following
nine regions of the plane the endpoint lies in.

• Of course, a point with code 0000 is inside the window.

bit 1 : bit 2 : bit 3 : bit 4

Top : Bottom : Right : Left:

ymin

ymax

xmin xmax

0000

1000

0100

0001 0010

1001

0101 0110

1010

Cohen-Sutherland Algorithm

ymin

ymax

xmin xmax

0000

1000

0100

0001 0010

1001

0101 0110

1010

Cohen-Sutherland Algorithm

• if both endpoint codes are 0000 ➔ the line
segment is visible (inside).

• the logical AND of the two endpoint codes
– not completely 0000 ➔ the line segment is

not visible (outside)
– completely 0000 ➔ the line segment maybe

inside (and outside)

• Lines that cannot be identified as being
completely inside or completely outside a
clipping window are then checked for
intersection with the window border lines.

Cohen-Sutherland Algorithm

• Consider code of an end point

– if bit 1 is 1, intersect with line y = Ymax

– if bit 2 is 1, intersect with line y = Ymin

– if bit 3 is 1, intersect with line x = Xmax

– if bit 4 is 1, intersect with line x = Xmin

• Consider line CD.

– If endpoint C is chosen, then the bottom boundary line Y=Ymin is selected
for computing intersection

– If endpoint D is chosen, then either the top boundary line Y=Ymax or the
right boundary line X=Xmax is used.

– The coordinates of the intersection point are:

• y = y0 + m(x-x0)

• x = Xmax or Xmin if the boundary line is vertical or

• x = x0 + 1/m(y-y0) Xmin if the boundary line is horizontal

• Y= Ymax or Ymin , Where
0

0

xx

yy
m

end

end

−

−
=

Cohen-Sutherland Algorithm

ymin

ymax

xmin xmax

C

D

A

B
J

I

K

L

F

E

G

H

G’
H’

I’
J’

• Replace endpoint (x1,y1) with the intersection
point(xi,yi), effectively eliminating the portion of the
original line that is on the outside of the selected
window boundary.

• The new endpoint is then assigned an updated region
code and the clipped line re-categoriged and handled in
the same way.

• This iterative process terminates when we finally reach
a clipped line that belongs to either category 1(visible)
or category 2(not visible).

Cohen-Sutherland Algorithm

cgvr.korea.ac.kr 22

Cohen-Sutherland Line Clipping

• Use Simple Tests to Classify Easy Cases First

P7

P8

P10

P9

P1

P2

P5

P4

P3

P6

cgvr.korea.ac.kr 23

Cohen-Sutherland Line Clipping

• Classify Some Lines Quickly by AND of Bit Codes Representing
Regions of Two Endpoints (Must Be 0)

P10

P5

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

P1

P2

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

cgvr.korea.ac.kr 24

Cohen-Sutherland Line Clipping

• Classify Some Lines Quickly by AND of Bit Codes Representing
Regions of Two Endpoints (Must Be 0)

P10

P5

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

P1

P2

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

cgvr.korea.ac.kr 25

Cohen-Sutherland Line Clipping

• Classify Some Lines Quickly by AND of Bit Codes Representing
Regions of Two Endpoints (Must Be 0)

P10

P5

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

cgvr.korea.ac.kr 26

Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That
Can’t be Classified Quickly

P10

P5

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

cgvr.korea.ac.kr 27

Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That
Can’t be Classified Quickly

P10

P5

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

cgvr.korea.ac.kr 28

Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That
Can’t be Classified Quickly

P10

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

cgvr.korea.ac.kr 29

Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That
Can’t be Classified Quickly

P10

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

cgvr.korea.ac.kr 30

Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That
Can’t be Classified Quickly

P10

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

cgvr.korea.ac.kr 31

Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That
Can’t be Classified Quickly

P10

P6

P9

0001P7

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

cgvr.korea.ac.kr 32

Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That
Can’t be Classified Quickly

P10

P6

P9

0001

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

cgvr.korea.ac.kr 33

Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That
Can’t be Classified Quickly

P10

P6

P9

0001

P8

0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

cgvr.korea.ac.kr 34

Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That
Can’t be Classified Quickly

P10

P6

P9

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

cgvr.korea.ac.kr 35

Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That
Can’t be Classified Quickly

P10

P6

P9

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

cgvr.korea.ac.kr 36

Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That
Can’t be Classified Quickly

P10

P6

P9

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

cgvr.korea.ac.kr 37

Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That
Can’t be Classified Quickly

P10

P6

P9

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

cgvr.korea.ac.kr 38

Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That
Can’t be Classified Quickly

P10

P6

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

P’9

cgvr.korea.ac.kr 39

Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That
Can’t be Classified Quickly

P6

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

P10

P’9

cgvr.korea.ac.kr 40

Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That
Can’t be Classified Quickly

P6

0001 0101

0100

01100010

0000

1010

1000

1001

P4

P3

Bit 4

Bit 3

Bit 2Bit 1

P’5

P’7

P’8

