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Introduction
❑ window 

▪ a world-coordinate area selected for display

▪ define what is to be viewed

❑ view port

▪ an area on a display device to which a window is mapped

▪ define where it is to be displayed

▪ define within the unit square

▪ the unit square is mapped to the display area for the 
particular output device in use at that time

❑ windows & viewport

▪ be rectangles in standard position, with the rectangle 
edges parallel to the coordinate axes



❑ viewing transformation 

▪ the mapping of a part of a world-coordinate scene to 
device coordinates

▪ 2D viewing transformation = window-to-viewport, 
windowing transformation
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❑ viewing-transformation in several steps

o construct the world-coordinate scene 

o transform descriptions in world coordinates to viewing 
coordinates

o map the viewing-coordinate description of the scene to 
normalized coordinates

o transfer to device coordinates

Introduction



❑ viewing-transformation

▪ by changing the position of the viewport

✓can view objects at different positions on the display 
area of an output device

▪ by varying the size of viewports

✓can change the size and proportions 
of displayed objects

✓zooming effects 

Introduction



❑ The composite 2D transformation to convert world 
coordinates to viewing coordinates

MWC,VC = R • T

Viewing coordinate reference frame



Window-to-viewport coordinate transformation

❑ transfer to the viewing reference frame

▪ choose the window extents in viewing coordinate

▪ select the viewport limits in normalized coordinate

❑ to maintain the same relative placement in the viewport as in the window

❑ Thus                                                                        Where,
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Window-to-viewport coordinate transformation

• Eight coordinate values that define the window and the 
viewport are just constants. 

• Express these two formulas for computing (vx,vy) from 
(wx,wy) in terms of a translate-scale-translate transformation 
N.
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Clipping Operations

• Clipping
– Any procedure that identifies those portions of a picture 

that are either inside or outside of a specified region of 
space

• Applied in World Coordinates

• Adapting Primitive Types
– Point

– Line

– Area (or Polygons)

– Curve
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Point Clipping

• Assuming that the clip window is a rectangle in standard 
position

• For a clipping rectangle in standard position, we save a 2-D 
point P(x,y) for display if the following inequalities are 
satisfied:

• If any one of these four inequalities is not satisfied, the point 
is clipped (not saved for display) 

• Where                                                  define the clipping window.
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Line clipping

• Line clipping procedure

o test a given line segment to determine whether it lies 
completely inside the clipping window

o if it doesn’t, we try to determine whether it lies completely 
outside the window

o if we can’t identify a line as completely inside or completely 
outside, we must perform intersection calculations with one or 
more clipping boundaries



Line clipping

• Checking the line endpoints ⇒ inside-outside test

• Line clipping

➢ Cohen-Sutherland line clipping

➢ Liang-Barsky line clipping



Cohen-Sutherland Algorithm

• Divide the line clipping process into two phases:

– Identify those lines which intersect the clipping window 
and so need to be clipped.

– Perform the clipping

• All lines fall into one of the following clipping categories:

– Visible: Both end points of the line lie within the window.

– Not visible: The line definitely lies outside the window.  
This will occur if the line from (x1,y1) to (x2,y2) satisfies 
any one of the following inequalities:

– Clipping candidate: the line is in neither category 1 nor 2
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is in category 1(Visible)
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Cohen-Sutherland Algorithm
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Cohen-Sutherland Algorithm



• Assign a four-bit pattern (Region Code) to each endpoint of the given 
segment. The code is determined according to which of the following 
nine regions of the plane the endpoint lies in.

• Of course, a point with code 0000 is inside the window.

bit 1  :  bit 2  :  bit 3  :  bit 4

Top : Bottom : Right : Left:
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Cohen-Sutherland Algorithm



ymin

ymax

xmin xmax

0000

1000

0100

0001 0010

1001

0101 0110

1010

Cohen-Sutherland Algorithm



• if both endpoint codes are 0000  ➔ the line 
segment is visible (inside).

• the logical AND of the two endpoint codes 
– not completely 0000  ➔ the line segment is 

not visible (outside)
– completely 0000  ➔ the line segment maybe

inside (and outside)

• Lines that cannot be identified as being 
completely inside or completely outside a 
clipping window are then checked for 
intersection with the window border lines.

Cohen-Sutherland Algorithm



• Consider code of an end point

– if bit 1 is 1, intersect with line y = Ymax 

– if bit 2 is 1, intersect with line y = Ymin 

– if bit 3 is 1, intersect with line x = Xmax 

– if bit 4 is 1, intersect with line x = Xmin  

• Consider line CD.

– If endpoint C is chosen, then the bottom boundary line Y=Ymin is selected 
for computing intersection

– If endpoint D is chosen, then either the top boundary line Y=Ymax or the 
right boundary line X=Xmax is used.

– The coordinates of the intersection point are:

• y = y0 + m(x-x0) 

• x = Xmax  or Xmin    if the boundary line is vertical or

• x = x0 + 1/m(y-y0) Xmin    if the boundary line is horizontal

• Y= Ymax or Ymin   ,        Where
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• Replace endpoint (x1,y1) with the intersection 
point(xi,yi), effectively eliminating the portion of the 
original line that is on the outside of the selected 
window boundary. 

• The new endpoint is then assigned an updated region 
code and the clipped line re-categoriged and handled in 
the same way. 

• This iterative process terminates when we finally reach 
a clipped line that belongs to either category 1(visible) 
or category 2(not visible).

Cohen-Sutherland Algorithm
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Cohen-Sutherland Line Clipping

• Use Simple Tests to Classify Easy Cases First
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Cohen-Sutherland Line Clipping

• Classify Some Lines Quickly by AND of Bit Codes Representing 
Regions of Two Endpoints (Must Be 0)
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Cohen-Sutherland Line Clipping

• Classify Some Lines Quickly by AND of Bit Codes Representing 
Regions of Two Endpoints (Must Be 0)
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Cohen-Sutherland Line Clipping

• Classify Some Lines Quickly by AND of Bit Codes Representing 
Regions of Two Endpoints (Must Be 0)
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Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That 
Can’t be Classified Quickly
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Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That 
Can’t be Classified Quickly
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Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That 
Can’t be Classified Quickly
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Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That 
Can’t be Classified Quickly
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Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That 
Can’t be Classified Quickly
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Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That 
Can’t be Classified Quickly
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Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That 
Can’t be Classified Quickly
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Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That 
Can’t be Classified Quickly
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Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That 
Can’t be Classified Quickly
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Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That 
Can’t be Classified Quickly
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Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That 
Can’t be Classified Quickly
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Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That 
Can’t be Classified Quickly
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Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That 
Can’t be Classified Quickly
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Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That 
Can’t be Classified Quickly
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Cohen-Sutherland Line Clipping

• Compute Intersections with Window Boundary for Lines That 
Can’t be Classified Quickly
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