
Data

Compression

❑Distinguish between lossless and lossy compression.

❑ Describe run-length encoding and how it achieves compression.

❑ Describe Huffman coding and how it achieves compression.

❑ Describe Lempel Ziv encoding and the role of the dictionary in encoding and

decoding.

❑ Describe the main idea behind the JPEG standard for compressing still

images.

Objectives
After studying this chapter, the student should be able to:

Data compression implies sending or storing a smaller

number of bits. Although many methods are used for this

purpose, in general these methods can be divided into two

broad categories: lossless and lossy methods.

Figure 1 Data compression methods

LOSSLESS COMPRESSION

In lossless data compression, the integrity of the data is

preserved. The original data and the data after

compression and decompression are exactly the same

because, in these methods, the compression and

decompression algorithms are exact inverses of each

other: no part of the data is lost in the process.

Redundant data is removed in compression and added

during decompression. Lossless compression methods

are normally used when we cannot afford to lose any

data.

Run-length encoding

Run-length encoding is probably the simplest method of

compression. It can be used to compress data made of any

combination of symbols. It does not need to know the

frequency of occurrence of symbols and can be very efficient

if data is represented as 0s and 1s.

The general idea behind this method is to replace

consecutive repeating occurrences of a symbol by one

occurrence of the symbol followed by the number of

occurrences.

The method can be even more efficient if the data uses

only two symbols (for example 0 and 1) in its bit pattern and

one symbol is more frequent than the other.

Figure 2 Run-length encoding example

Huffman coding

Huffman coding assigns shorter codes to symbols that occur

more frequently and longer codes to those that occur less

frequently. For example, imagine we have a text file that

uses only five characters (A, B, C, D, E). Before we can

assign bit patterns to each character, we assign each

character a weight based on its frequency of use. In this

example, assume that the frequency of the characters is as

shown in Table 1.

Figure 4 Huffman coding

A character’s code is found by starting at the root and

following the branches that lead to that character. The code

itself is the bit value of each branch on the path, taken in

sequence.

Figure 5 Final tree and code

Encoding

Let us see how to encode text using the code for our five

characters. Figure 6 shows the original and the encoded text.

Figure 6 Huffman encoding

Decoding

The recipient has a very easy job in decoding the data it

receives. Figure 7 shows how decoding takes place.

Figure 7 Huffman decoding

Lempel Ziv encoding

Lempel Ziv (LZ) encoding is an example of a category of

algorithms called dictionary-based encoding. The idea is to

create a dictionary (a table) of strings used during the

communication session. If both the sender and the receiver

have a copy of the dictionary, then previously-encountered

strings can be substituted by their index in the dictionary to

reduce the amount of information transmitted.

Compression

In this phase there are two concurrent events: building an

indexed dictionary and compressing a string of symbols. The

algorithm extracts the smallest substring that cannot be

found in the dictionary from the remaining uncompressed

string. It then stores a copy of this substring in the dictionary

as a new entry and assigns it an index value. Compression

occurs when the substring, except for the last character, is

replaced with the index found in the dictionary. The process

then inserts the index and the last character of the substring

into the compressed string.

Figure 8 An example of Lempel Ziv encoding

Decompression

Decompression is the inverse of the compression process.

The process extracts the substrings from the compressed

string and tries to replace the indexes with the corresponding

entry in the dictionary, which is empty at first and built up

gradually. The idea is that when an index is received, there is

already an entry in the dictionary corresponding to that

index.

Figure 9 An example of Lempel Ziv decoding

LOSSY COMPRESSION METHODS

Our eyes and ears cannot distinguish subtle changes. In

such cases, we can use a lossy data compression

method. These methods are cheaper—they take less

time and space when it comes to sending millions of

bits per second for images and video. Several methods

have been developed using lossy compression

techniques. JPEG (Joint Photographic Experts

Group) encoding is used to compress pictures and

graphics, MPEG (Moving Picture Experts Group)

encoding is used to compress video, and MP3 (MPEG

audio layer 3) for audio compression.

Image compression – JPEG encoding

An image can be represented by a two-dimensional array

(table) of picture elements (pixels).

In JPEG, a grayscale picture is divided into blocks of 8 × 8

pixel blocks to decrease the number of calculations because,

as we will see shortly, the number of mathematical

operations for each picture is the square of the number of

units.

Figure 10 JPEG grayscale example, 640 × 480 pixels

The whole idea of JPEG is to change the picture into a linear

(vector) set of numbers that reveals the redundancies. The

redundancies (lack of changes) can then be removed using

one of the lossless compression methods we studied

previously. A simplified version of the process is shown in

Figure 11.

Figure 11 The JPEG compression process

Discrete cosine transform (DCT)

In this step, each block of 64 pixels goes through a

transformation called the discrete cosine transform (DCT).

The transformation changes the 64 values so that the relative

relationships between pixels are kept but the redundancies

are revealed. The formula is given in Appendix G. P(x, y)

defines one value in the block, while T(m, n) defines the

value in the transformed block.

To understand the nature of this transformation, let us show

the result of the transformations for three cases.

Figure 12 Case 1: uniform grayscale

Figure 13 Case 2: two sections

Figure 14 Case 3: gradient grayscale

Quantization

After the T table is created, the values are quantized to

reduce the number of bits needed for encoding. Quantization

divides the number of bits by a constant and then drops the

fraction. This reduces the required number of bits even more.

In most implementations, a quantizing table (8 by 8) defines

how to quantize each value. The divisor depends on the

position of the value in the T table. This is done to optimize

the number of bits and the number of 0s for each particular

application.

Compression

After quantization the values are read from the table, and

redundant 0s are removed. However, to cluster the 0s

together, the process reads the table diagonally in a zigzag

fashion rather than row by row or column by column. The

reason is that if the picture does not have fine changes, the

bottom right corner of the T table is all 0s.

JPEG usually uses run-length encoding at the compression

phase to compress the bit pattern resulting from the zigzag

linearization.

Figure 15 Reading the table

