DUT

Daffodil Institute of IT

lecturer, Dept. of CS
Daffodil institute of (DIIT

Regular Expressi

Definitions
Equivalence to Finite Automata

RE’s: Introduction

» Regular expressions are an algebraic way to describe langua
» They describe exactly the regular languages.

» If Eis a regular expression, then L(E) is the language it defines
>

We’ll describe RE’s and their languages recursively.

RE’s: Definition

» Basis 1: If a is any symbol, then a is a RE, and L(a) =
ta}.

» Note: {a} is the language containing one string, and that
string is of length 1.

» Basis 2: € is a RE, and L(€) = {€}.
» Basis 3: & is a RE, and L(@) = .

RE’s: Definition - (2)

» Induction 1: If E; and E, are regular expressions, then
E,+E, is a regular expression, and L(E,+E,) = L(E,)UL(E,).

» Induction 2: If E; and E, are regular expressions, then
E,E, is a regular expression, and L(EE,) = L(E,)L(E,).

/

Concatenation : the set of strings wx such that
Isin L(E,) and x is in L(E,).

RE’s: Definition - (3)

» Induction 3: If Eis a RE, then E* is a RE, and L(E*) =

(L(E))™

Closure, or “Kleene closure” = set of strings
W;W,...w,, for some n > 0, where each w; is
in L(E).

Note: when n=0, the string is €.

Precedence of Operators

» Parentheses may be used wherever needed to influence
the grouping of operators.

» Order of precedence is * (highest), then concatenation,
then + (lowest).

Examples: RE’s

» L(01) ={01}.
» L(01+0) = {01, 03.
» L(0(1+0)) = {01, 003}.
» Note order of precedence of operators.
L(0*) = {€, 0, 00, 000,... }.

» L((0+10)*(e+1)) = all strings of 0’s and 1’s without two
consecutive 1’s.

Equivalence of RE’s and Autom

» We need to show that for every RE, there is an automaton th
the same language.

» Pick the most powerful automaton type: the e-NFA.

» And we need to show that for every automaton, there is a RE
its language.

» Pick the most restrictive type: the DFA.

Converting a RE to an e-NFA

» Proof is an induction on the number of operators (+,
concatenation, *) in the RE.

» We always construct an automaton of a special form
(next slide).

Form of e-NFA’s Constructed

Start state: “Final” stat
Only state Only state
with external with externa

predecessors SUCCessors

RE to e-NFA: Basis

» Symbol a: Q °

> € €
O

> O

RE to e-NFA: Induction 1 - Union

For E, U E,

RE to e-NFA: Induction 2 - Concate

RE to e-NFA: Induction 3 - Closure

DFA-to-RE

» Astrange sort of induction.

» States of the DFA are assumed to be 1,2,...,n.

» We construct RE’s for the labels of restricted sets of paths.
» Basis: single arcs or no arc at all.

» Induction: paths that are allowed to traverse next state in order.

k-Paths

» Ak-path is a path through the graph of the DFA that
goes though no state numbered higher than k.

» Endpoints are not restricted; they can be any state.

Example: k-Paths

0-paths from 2 to 3
RE for labels = 0.

1-paths from 2 to 3:
RE for labels = 0+11.

2-paths from 2 to 3:
RE for labels =
(10)*0+1(01)*1

3-paths from 2 to
RE for labels =

k-Path Induction

» Let R;¥ be the regular expression for the set of labels of
k-paths from state i to state j.

» Basis: k=0. R;;° = sum of labels of arc from i to j.
» @ if no such arc.
» But add € if i=j.

Example: Basis

> R120=0.
> R110=@+E=E.

k-Path Inductive Case

> A k-path from i to j either:
1. Never goes through state k, or

2. Goes through k one or more times.

k= R k-1 k-1(R k-1y* R k-1
Rij* = Ri* " + Ry (R)™ Ry ™.

A \
Doesn’t go ?&ei I;Loem Then, from
) Zero or k to]

through k first time _
more times

from k to k

lllustration of Induction

Path to k
Paths not going
through k From k to k ﬂ‘

Several times/
R

........

*
>
N S S T
........ L

States < k

Final Step

> The RE with the same language as the DFA is the sum

(union) of R;", where:

1. n is the number of states; i.e., paths are unconstrained.
2. i is the start state.

3. j is one of the final states.

Example

Rys® = Rys® + Rys?(Ra3?)"Ras? = Rys?(Ry3%)"
R,32 = (10)*0+1(01)*1

R332 = 0(01)*(1+00) + 1(10)*(0+11)
R,53 = [(10)*0+1(01)*1] [(0(01)*(1+00) + 1(10)*(0+11))]*

vV v v Vv

Summary

» Each of the three types of automata (DFA, NFA, e-NFA)
we discussed, and regular expressions as well, define
exactly the same set of languages: the regular
languages.

Algebraic Laws for RE’s

» Union and concatenation behave sort of like addition
and multiplication.

» +is commutative and associative; concatenation is
associative.

» Concatenation distributes over +.

» Exception: Concatenation is not commutative.

ldentities and Annihilators

» D is the identity for +.
» R+ =R.
» € is the identity for concatenation.
» €eR=Re=R.
» (D is the annihilator for concatenation.

» OR=RU =.

