Man-in-the Middle Attack formulation

- 1. Darth generating two random private keys X_{D1} and X_{D2} and then compute the public Keys Y_{D1} and Y_{D2} .
- 2. Alice transmits her private Key X_A Public key $Y_A = \alpha^{XA} \mod q$, Alice transmits public Key Y_A to Bob; Bob transmit his private Key X_B Public key $Y_B = \alpha^{XB} \mod q$,
- Darth intercepts Alice's Public Key Y_A and transmits his public Key Y_{D1} to Bob.
 Darth Calculates k₂ = (Y_A) ^{XD2} mod q
- 4. Bob receives public Key Y_{D1} now he calculates key $K_1 = (Y_{D1})^{XB} \mod q$
- 5. Bob transmits his public key Y_B to alice

- Darth intercepts and transmits his second public key Y_{D2} to alice. Darth calculates K₁= (Y_B) ^{XD1} mod q
- 7. Alice receives the key Y_{D2} and calculates the shared key $k_2=(Y_{D2})^{XA} \mod q$

Darth private key X_{D1} and X_{D2} Public Keys $Y_{D1}=\alpha^{Xd1} \mod q$; and $Y_{D2}=\alpha^{Xd2} \mod q$ Session Keys $K_1=(Y_B)^{XD1} \mod q; k_2 = (Y_A)^{XD2} \mod q$

Alic's Private key X_A Alice's Public key $Y_A = \alpha^{XA} \mod q$ Alic's Shared Key $K_2 = (Y_{D2})^{XA} \mod q$ Bob's Private key Y_B Bob's public Key $Y_B = \alpha^{XB} \mod q$ Bob's Shared Key $K_1 = (Y_{D1})^{XB} \mod q$